2023学年甘肃省兰州市天庆实验中学数学九上期末考试模拟试题含解析_第1页
2023学年甘肃省兰州市天庆实验中学数学九上期末考试模拟试题含解析_第2页
2023学年甘肃省兰州市天庆实验中学数学九上期末考试模拟试题含解析_第3页
2023学年甘肃省兰州市天庆实验中学数学九上期末考试模拟试题含解析_第4页
2023学年甘肃省兰州市天庆实验中学数学九上期末考试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1如图,经过原点的与轴分别交于两点,点是劣弧上一点,则()A是锐角B是直角C是钝角D大小无法确定2在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是( )A4.5米B8米C5米D5.5米3下列44的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与ABC相似的三角形所在的

2、网格图形是()ABCD4下列方程有实数根的是ABC+2x1=0D5下列事件中,是必然事件的是( )A随意翻倒一本书的某页,这页的页码是奇数.B通常温度降到以下,纯净的水结冰.C从地面发射一枚导弹,未击中空中目标.D购买1张彩票,中奖.6如图,AB是O的弦,ODAB于D交O于E,则下列说法错误的是( )AAD=BDBACB=AOEC弧AE=弧BEDOD=DE7如图,ABC是一块锐角三角形材料,高线AH长8 cm,底边BC长10 cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为( )A40 cm2B20 cm2C2

3、5 cm2D10 cm28小丽参加学校“庆元旦,迎新年演唱比赛,赛后小丽把七位评委所合的分数进行处理,得到平均数、中位数,众数,方差,如果把这七个数据去掉一个最高分和一个最低分,则数据一定不发发生变化的是 ( )A平均数B众数C方差D中位数9已知二次函数yax2bxc的图象如图,则下列叙述正确的是( )Aabc0B3ac0Cb24ac0D将该函数图象向左平移2个单位后所得到抛物线的解析式为yax2c10抛物线与坐标轴的交点个数是( )A3B2C1D011如图,ABEF,CDEF,BAC=50,则ACD=()A120B130C140D15012下列品牌的运动鞋标志中,既是轴对称图形,又是中心对称

4、图形的是( )ABCD二、填空题(每题4分,共24分)13如图,在矩形中,以点为圆心,以的长为半径画弧交于,点恰好是中点,则图中阴影部分的面积为_.(结果保留)14若线段AB=10cm,点C是线段AB的黄金分割点,则AC的长为_cm.(结果保留根号)15反比例函数y的图象经过(1,y1),(3,y1)两点,则y1_y1(填“”,“”或“”)16已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_.17如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上若线段AB6cm,则线段BC_cm18如图,在矩形纸片中,将沿翻折,使点落在

5、上的点处,为折痕,连接;再将沿翻折,使点恰好落在上的点处,为折痕,连接并延长交于点,若,则线段的长等于_三、解答题(共78分)19(8分)如图,抛物线ya(x+2)(x4)与x轴交于A,B两点,与y轴交于点C,且ACOCBO(1)求线段OC的长度;(2)若点D在第四象限的抛物线上,连接BD、CD,求BCD的面积的最大值;(3)若点P在平面内,当以点A、C、B、P为顶点的四边形是平行四边形时,直接写出点P的坐标20(8分)如图:已知ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G(1)若AB3,BC4,CE2,求CG的长;(2)证明:AF2FGFE21(8分)图中是抛物线拱桥,点P

6、处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,)(1)求这条抛物线的解析式;(2)水面上升1m,水面宽是多少?22(10分)如图,在平面直角坐标系中,已知三个顶点的坐标分别是, , .(1)以点为位似中心,将缩小为原来的得到,请在轴右侧画出;(2) 的正弦值为 .23(10分)感知:如图,在等腰直角三角形ABC中,ACB90,BCm,将边AB绕点B顺时针旋转90得到线段BD,过点D作DECB交CB的延长线于点E,连接CD(1)求证:ACBBED;(2)BCD的面积为 (用含m的式子表示)拓展:如图,在一般的RtABC,ACB90,BCm,

7、将边AB绕点B顺时针旋转90得到线段BD,连接CD,用含m的式子表示BCD的面积,并说明理由应用:如图,在等腰ABC中,ABAC,BC8,将边AB绕点B顺时针旋转90得到线段BD,连接CD,则BCD的面积为 ;若BCm,则BCD的面积为 (用含m的式子表示)24(10分)如图,在ABC中,ABAC,以AB为直径作半圆O,交BC于点D,交AC于点E(1)求证:BDCD(2)若弧DE50,求C的度数(3)过点D作DFAB于点F,若BC8,AF3BF,求弧BD的长25(12分)已知如图所示,A,B,C是O上三点,AOB=120,C是 的中点,试判断四边形OACB形状,并说明理由26如图,已知一次函数

8、的图象与反比例函数的图象交于点,与轴交于点,连接,点为轴上一点,连接(1)求反比例函数与一次函数的解析式;(2)求的面积参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆周角定理的推论即可得出答案【详解】和对应着同一段弧 ,是直角故选:B【点睛】本题主要考查圆周角定理的推论,掌握圆周角定理的推论是解题的关键2、A【解析】根据同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似即可得.【详解】如图,由题意可得:由相似三角形的性质得:,即解得:(米)故选:A.【点睛】本题考查了相似三角形的性质,理解题意,将问题转化为利用相似三角形的性质求解是解题关键.3、B【解析

9、】根据勾股定理,AB=2,BC=,AC=,所以ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2:3=:3,故本选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故本选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故本选项错误;D、三角形的三边分别为=,=,4,三边之比为:4,故本选项错误故选B4、C【解析】Ax40,x4+2=0无解,故本选项不符合题意;B0,=1无解,故本选项不符合题意;Cx2+2x1=0, =80,方程有实数根,故本选项符合题意;D解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项

10、不符合题意故选C5、B【分析】根据必然事件的定义判断即可.【详解】A、C、D为随机事件,B为必然事件.故选B.【点睛】本题考查随机事件与必然事件的判断,关键在于熟记概念.6、D【解析】由垂径定理和圆周角定理可证,ADBD,ADBD,AEBE,而点D不一定是OE的中点,故D错误【详解】ODAB,由垂径定理知,点D是AB的中点,有ADBD,,AOB是等腰三角形,OD是AOB的平分线,有AOE12AOB,由圆周角定理知,C12AOB,ACBAOE,故A、 B、C正确,而点D不一定是OE的中点,故错误.故选D.【点睛】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.7、B【解析】

11、设矩形DEFG的宽DE=x,根据相似三角形对应高的比等于相似比列式求出DG,再根据矩形的面积列式整理,然后根据二次函数的最值问题解答即可【详解】如图所示:设矩形DEFG的宽DE=x,则AM=AH-HM=8-x,矩形的对边DGEF,ADGABC,即,解得DG=(8-x),四边形DEFG的面积=(8-x)x=-(x1-8x+16)+10=-(x-4)1+10,所以,当x=4,即DE=4时,四边形DEFG最大面积为10cm1故选B【点睛】考查了相似三角形的应用,二次函数的最值问题,根据相似三角形的对应高的比等于相似比用矩形DEFG的宽表示出长是解题的关键8、D【分析】根据中位数的定义即位于中间位置或

12、中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数进行分析即可【详解】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D【点睛】本题考查统计量的选择,解题的关键是了解中位数的定义,难度较小9、B【解析】解:A由开口向下,可得a0;又由抛物线与y轴交于负半轴,可得c0,然后由对称轴在y轴右侧,得到b与a异号,则可得b0,故得abc0,故本选项错误;B根据图知对称轴为直线x=2,即=2,得b=4a,再根据图象知当x=1时,y=a+b+c=a4a+c=3a+c0,故本选项正确;C由抛物线与x轴有两个交点,可得b24ac0,故本选项错误;Dy=ax2+bx+c=, =2,原式=,向左

13、平移2个单位后所得到抛物线的解析式为,故本选项错误;故选B10、A【详解】解:抛物线解析式,令,解得:,抛物线与轴的交点为(0,4),令,得到,抛物线与轴的交点分别为(,0),(1,0)综上,抛物线与坐标轴的交点个数为1故选A【点睛】本题考查抛物线与轴的交点,解一元一次、二次方程11、C【解析】试题分析:如图,延长AC交EF于点G;ABEF,DGC=BAC=50;CDEF,CDG=90,ACD=90+50=140,故选C考点:垂线的定义;平行线的性质;三角形的外角性质12、D【分析】根据轴对称图形和中心对称图形的定义即可得出答案【详解】A是轴对称图形,但不是中心对称图形,故此选项不符合题意;B

14、不是轴对称图形,也不是中心对称图形,故此选项不符合题意;C不是轴对称图形,也不是中心对称图形,故此选项不符合题意;D既是轴对称图形又是中心对称图形,故此选项符合题意故选D【点睛】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题(每题4分,共24分)13、【分析】连接EC,先根据题意得出,再得出,然后计算出和的面积即可求解.【详解】连接EC,如下图所示:由题意可得:是中点故填:.【点睛】本题主要考查扇形面积的计算、矩形的性质、解直角三角形,准确作出辅助

15、线是关键.14、 或【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当ACBC时,则有AC=AB=10=,当ACBC时,则有BC=AB=10=,AC=AB-BC=10-( )= ,AC长为 cm或 cm.故答案为: 或【点睛】本题考查了黄金分割点的概念注意这里的AC可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键15、【分析】根据反比例函数的增减性,结合横坐标的大小关系,即可得到答案【详解】解:反比例函数,图象在一、三象限,y随着x的增大而减小故答案是:【点睛】本题考查了反比例函

16、数图象上点的坐标特征,采用的是利用反比例函数的增减性,结合横坐标的大小关系进行的解答16、(1,4).【解析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.17、18【分析】根据已知图形构造相似三角形,进而得出,即可求得答案.【详解】如图所示:过点A作平行线的垂线,交点分别为D、E,可得:,即,解得:,故答案为:.【点睛】本题主要考查了相似三角形的应用,根据题意得出是解答本题的关键.18、【分析】根据折叠可得是正方形,可求出三角形的三边为3,4,5,在中,由勾股定理可以求出三边的长,通过作辅助线,可证,三边

17、占比为3:4:5,设未知数,通过,列方程求出待定系数,进而求出的长,然后求的长【详解】过点作,垂足为、,由折叠得:是正方形,在中,在中,设,则,由勾股定理得,解得:,设,则,解得:,故答案为【点睛】考查折叠轴对称的性质,矩形、正方形的性质,直角三角形的性质等知识,知识的综合性较强,是有一定难度的题目三、解答题(共78分)19、(1)2;(2)2;(3)(2,2),(6,2)或(6,2)【分析】(1)由抛物线的解析式先求出点A,B的坐标,再证AOCCOB,利用相似三角形的性质可求出CO的长;(2)先求出抛物线的解析式,再设出点D的坐标(m,m2m2),用含m的代数式表示出BCD的面积,利用函数的

18、性质求出其最大值;(3)分类讨论,分三种情况由平移规律可轻松求出点P的三个坐标【详解】(1)在抛物线ya(x+2)(x4)中,当y0时,x12,x24,A(2,0),B(4,0),AO2,BO4,ACOCBO,AOCCOB90,AOCCOB,即,CO2;(2)由(1)知,CO2,C(0,2)将C(0,2)代入ya(x+2)(x4),得,a,抛物线解析式为:yx2x2,如图1,连接OD,设D(m,m2m2),则SBCDSOCD+SOBDSBOC2m+4(m2+m+2)42m2+2m(m2)2+2,根据二次函数的图象及性质可知,当m2时,BCD的面积有最大值2;(3)如图21,当四边形ACBP为平

19、行四边形时,由平移规律可知,点C向右平移4个单位长度,再向上平移2个单位长度得到点B,所以点A向右平移4个单位长度,再向上平移2个单位长度得到点P,因为A(2,0),所以P1(2,2);同理,在图22,图23中,可由平移规律可得P2(6,2),P3(6,2);综上所述,当以点A、C、B、P为顶点的四边形是平行四边形时,点P的坐标为(2,2),(6,2),P3(6,2)【点睛】本题考查了相似三角形的判定与性质,待定系数法求二次函数的解析式,三角形的面积及平移规律等,解题关键是熟知平行四边形的性质及熟练运用平移规律20、(1)1;(2)证明见解析【解析】(1)根据平行四边形的性质得到ABCD,证明

20、EGCEAB,根据相似三角形的性质列出比例式,代入计算即可;(2)分别证明DFGBFA,AFDEFB,根据相似三角形的性质证明【详解】(1)四边形ABCD是平行四边形,ABCD,EGCEAB,即,解得,CG1;(2)ABCD,DFGBFA,ADCB,AFDEFB,即AF2FGFE【点睛】本题考查的是平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键21、(1)y=x2+2x;(2)2m【分析】(1)利用待定系数法求解可得;(3)在所求函数解析式中求出y=1时x的值即可得【详解】解:(1)设抛物线的解析式为y=ax2+bx+c,将点O(0,0)、A(4,0)

21、、P(3,)代入,得:解得:,所以抛物线的解析式为y=x2+2x;(2)当y=1时,x2+2x=1,即x24x+2=0,解得:x=2,则水面的宽为2+(2)=2(m)答:水面宽是:2m【点睛】考查二次函数的应用,掌握待定系数法求二次函数解析式是解题的关键22、(1)见解析;(2)【分析】(1)连接、,分别取、的中点即可画出,(2)利用正弦函数的定义可知由,即可解决问题【详解】解:(1)连接OA、OC,分别取OA、OB、OC的中点 、,顺次连接 、,即为所求,如图所示,(2), ,【点睛】本题考查位似变换、平移变换等知识,锐角三角函数等知识,解题的关键是掌握位似变换的定义和性质,并据此得出变换后

22、的对应点注意:记住锐角三角函数的定义,属于中考常考题型23、感知:(1)详见解析;(1)m1;拓展: m1,理由详见解析;应用:16, m1【解析】感知:(1)由题意可得CACB,AABC25,由旋转的性质可得BABD,ABD90,可得DBEABC,即可证ACBBED;(1)由ACBBED,可得BCDEm,根据三角形面积求法可求BCD的面积;拓展:作DGCB交CB的延长线于G,可证ACBBGD,可得BCDGm,根据三角形面积求法可求BCD的面积;应用:过点A作ANBC于N,过点D作DMBC的延长线于点M,由等腰三角形的性质可以得出BNBC,由条件可以得出AFBBED就可以得出BNDM,由三角形

23、的面积公式就可以得出结论【详解】感知:证明:(1)ABC是等腰直角三角形,CACBm,AABC25,由旋转的性质可知,BABD,ABD90,DBE25,在ACB和DEB中,ACBBED(AAS)(1)ACBBEDDEBCmSBCDBCEDm1,故答案为 m1,拓展:作DGCB交CB的延长线于G,ABD90,ABC+DBG90,又ABC+A90,ADBG,在ACB和BGD中,ACBBGD(AAS),BCDGmSBCDBCDGm1,应用:作ANBC于N,DMBC交CB的延长线于M,ANBM90,BNBC2NAB+ABN90ABD90,ABN+DBM90,NABMBD线段BD是由线段AB旋转得到的,ABBD在AFB和BED中,ANBBMD(AAS),BNDMBC2SBCDBCDM8216,若BCm,则BNDMBCm,SBCDBCDMmmm1故答案为16,m1【点睛】本题考查了等腰三角形的性质,全等三角形的判定(AAS),全等三角形的性质,直角三角形的性质,面积计算,熟练掌握这些知识点是本题解题的关键.24、(1)详见解析;(2)65;(3)【分析】(1)连接AD,利用圆周角定理推知ADBD,然后由等腰三角形的性质证得结论;(2)根据已知条件得到EOD50,结合圆周角定理求得DAC25,所以根据三角形内角和定理求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论