2021-2022学年江苏省苏州市高新区实验初级中学中考四模数学试题含解析_第1页
2021-2022学年江苏省苏州市高新区实验初级中学中考四模数学试题含解析_第2页
2021-2022学年江苏省苏州市高新区实验初级中学中考四模数学试题含解析_第3页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种A1B2C3D42小王抛一枚质地均匀的硬币,

2、连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A1BCD3若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( )A90 B120 C150 D1804如图,四边形ABCD内接于O,AB为O的直径,点C为弧BD的中点,若DAB=50,则ABC的大小是()A55B60C65D705如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为( )A2BCD6式子有意义的x的取值范围是( )A且x1Bx1CD且x17一次函数y=2x+1的图像不经过 ( )A第一象限 B第二象限 C第三象限 D第四象限8下列各类数中,与数轴上的点存在一一对应

3、关系的是()A有理数 B实数 C分数 D整数9计算的结果是( )A1B-1CD10一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )A第一象限B第二象限C第三象限D第四象限二、填空题(本大题共6个小题,每小题3分,共18分)11计算(2a)3的结果等于_12如图,函数y=(x0)的图像与直线y=-x交于A点,将线段OA绕O点顺时针旋转30,交函数y=(x0)的图像于B点,得到线段OB,若线段AB=3-,则k= _.13如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,AEP=90,且EP交正方形外角的平分线CP于点P,则PC的长为_14在一条笔直的公路上有A、B

4、、C三地,C地位于A、B两地之间甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示则当乙车到达A地时,甲车已在C地休息了_小时15如图所示一棱长为3cm的正方体,把所有的面均分成33个小正方形其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用_秒钟16用换元法解方程,设y=,那么原方程化为关于y的整式方程是_三、解答题(共8题,共72分)17(8分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目

5、),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题: , ;扇形统计图中机器人项目所对应扇形的圆心角度数为 ;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.18(8分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表

6、法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率19(8分)已知,如图所示直线y=kx+2(k0)与反比例函数y=(m0)分别交于点P,与y轴、x轴分别交于点A和点B,且cosABO=,过P点作x轴的垂线交于点C,连接AC,(1)求一次函数的解析式(2)若AC是PCB的中线,求反比例函数的关系式20(8分)先化简再求值:(a),其中a=1+,b=121(8分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标建筑面积7200平方米,为我国西北第一高阁秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体小亮想

7、知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米已知ABBM,EDBM,GFBM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“

8、石鼓阁”的高AB的长度22(10分)自学下面材料后,解答问题。分母中含有未知数的不等式叫分式不等式。如: 0,b0,则0;若a0,b0;若a0,b0,则0;若a0,则0,则 或 ,(1)若0的解集.23(12分)如图,在方格纸中.(1)请在方格纸上建立平面直角坐标系,使,并求出点坐标;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;(3)计算的面积.24全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.

9、参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:先根据题意列出二元一次方程,再根据x,y都是非负整数可求得x,y的值详解:解:设2元的共有x张,5元的共有y张,由题意,2x+5y=27x=(27-5y)x,y是非负整数,或或,付款的方式共有3种故选C.点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解2、B【解析】直接利用概率的意义分析得出答案【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选B【点睛】此题主要考查了概率的意义,明确概率的意义是解

10、答的关键3、D【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2r,设正圆锥的侧面展开图的圆心角是n,则2rr180考点:圆锥的计算4、C【解析】连接OC,因为点C为弧BD的中点,所以BOC=DAB=50,因为OC=OB,所以ABC=OCB=65,故选C5、B【解析】作PAx轴于点A,构造直角三角形,根据三角函数的定义求解【详解】过P作x轴的垂线,交x轴于点A,P(2,4),OA=2,AP=4,.故选B【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.6、A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须

11、且故选A7、D【解析】根据一次函数的系数判断出函数图象所经过的象限,由k=20,b=10可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】k=20,b=10,根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.8、B【解析】根据实数与数轴上的点存在一一对应关系解答【详解】实数与数轴上的点存在一一对应关系,故选:B【点睛】本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也

12、就是说实数与数轴上的点一一对应.9、C【解析】原式通分并利用同分母分式的减法法则计算,即可得到结果【详解】解:=,故选:C.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键10、C【解析】y随x的增大而减小,可得一次函数y=kx+b单调递减,k0,又满足kb0,由此即可得出答案【详解】y随x的增大而减小,一次函数y=kx+b单调递减,k0,kb0,直线经过第二、一、四象限,不经过第三象限,故选C【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k0,k、b是常数)的图象和性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、8【解析】试

13、题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方12、-3【解析】作ACx轴于C,BDx轴于D,AEBD于E点,设A点坐标为(3a,-a),则OC=-3a,AC=-a,利用勾股定理计算出OA=-2a,得到AOC=30,再根据旋转的性质得到OA=OB,BOD=60,易证得RtOACRtBOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,则ABE为等腰直角三角形,利用等腰直角三角形的性质得到3-=(-3a+a),求出a=1,确定A点坐标为(3,-),然后把A(3,-)代入函数y=即可

14、得到k的值【详解】作ACx轴与C,BDx轴于D,AEBD于E点,如图,点A在直线y=-x上,可设A点坐标为(3a,-a),在RtOAC中,OC=-3a,AC=-a,OA=-2a,AOC=30,直线OA绕O点顺时针旋转30得到OB,OA=OB,BOD=60,OBD=30,RtOACRtBOD,OD=AC=-a,BD=OC=-3a,四边形ACDE为矩形,AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,AE=BE,ABE为等腰直角三角形,AB=AE,即3-=(-3a+a),解得a=1,A点坐标为(3,-),而点A在函数y=的图象上,k=3(-)=-3故答案为-3【点睛】本题是反比例函数综

15、合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用勾股定理、旋转的性质以及等腰直角三角形的性质进行线段的转换与计算13、【解析】在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定ANEECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题【详解】在AB上取BN=BE,连接EN,作PMBC于M四边形ABCD是正方形,AB=BC,B=DCB=DCM=90BE=BN,B=90,BNE=45,ANE=135PC平分DCM,PCM=45,ECP=135AB=BC,BN=BE,AN=ECAEP=90,AEB+PEC=90AEB+NAE=90,NAE=PEC

16、,ANEECP(ASA),NE=CPBC=3,EC=2,NB=BE=1,NE=,PC=故答案为:【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型14、2.1【解析】根据题意和函数图象中的数据可以求得乙车的速度和到达A地时所用的时间,从而可以解答本题【详解】由题意可得,甲车到达C地用时4个小时,乙车的速度为:200(3.11)=80km/h,乙车到达A地用时为:(200+240)80+1=6.1(小时),当乙车到达A地时,甲车已在C地休息了:6.14=2.1(小时),故答案为:2.1【点睛】本题考查了

17、一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答15、2.5秒【解析】把此正方体的点A所在的面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离在直角三角形中,一条直角边长等于5,另一条直角边长等于2,利用勾股定理可求得【详解】解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线(1)展开前面右面由勾股定理得ABcm;(2)展开底面右面由勾股定理得AB5cm;所以最短路径长为5cm,用时最少:522.5秒【点睛】本题考查了勾股定理的拓展应用“化曲面为平面”是解决“怎样爬行最近”这类问题的关

18、键16、6y2-5y+2=0【解析】根据y,将方程变形即可【详解】根据题意得:3y,得到6y25y20故答案为6y25y20【点睛】此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键三、解答题(共8题,共72分)17、(1),; (2);(3).【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.试题解析:(1);(2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生

19、).(如用树状图,酌情相应给分)考点:统计与概率的综合运用.18、解:(1)该校班级个数为420%=20(个),只有2名留守儿童的班级个数为:20(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:(2)由(1)得只有2名留守儿童的班级有2个,共4名学生设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:=【解析】(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;(2)利用树状图确定可能种

20、数和来自同一班的种数,然后就能算出来自同一个班级的概率.19、(2)y=2x+2;(2)y=【解析】(2)由cosABO,可得到tanABO2,从而可得到k2;(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值【详解】(2)cosABO=,tanABO=2又OA=2OB=2B(-2,0)代入y=kx+2得k=2一次函数的解析式为y=2x+2(2)当x=0时,y=2,A(0,2)当y=0时,2x+2=0,解得:x=2B(2,0)AC是PCB的中线,P(2,4)m=xy=24=4,反例函数的解析式为y=【点睛】本题主要考查的是反比例函数与

21、一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数ktanABO是解题的关键20、原式=【解析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=,当a=1+,b=1时,原式=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.21、 “石鼓阁”的高AB的长度为56m【解析】根据题意得ABC=EDC=90,ABM=GFH=90,再根据反射定律可知:ACB=ECD,则ABCEDC,根据相似三角形的性质可得=,再根据AHB=GHF,可证ABHGFH,同理得=,代入数值计算即可得出结论.【详解】由题意可得:ABC=EDC=90,ABM=GFH=90,由反射定律可知:ACB=ECD,则A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论