广东省汕头市两镇中学高二数学文月考试题含解析_第1页
广东省汕头市两镇中学高二数学文月考试题含解析_第2页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省汕头市两镇中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,若在定义域内恒成立,则的取值范围是(

)A.

B.

C.

D.参考答案:C2.某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y(单位:千瓦·时)与气温x(单位:℃)之间的关系,随机选取了4天的用电量与当天气温,并制作了以下对照表:x(单位:℃)171410-1y(单位:千瓦·时)24343864由表中数据得线性回归方程:,则由此估计:当某天气温为2℃时,当天用电量约为(

)A.56千瓦·时 B.62千瓦·时C.64千瓦·时 D.68千瓦·时参考答案:A【分析】根据回归直线方程经过样本中心点,求得,代入回归直线可求得;代入回归方程后,可预报当气温为℃时,当天的用电量。【详解】代入回归直线方程,求得所以回归直线方程为当温度为2℃时,代入求得千瓦·时所以选A【点睛】本题考查了回归方程的简单应用,注意回归直线方程一定经过样本的中心点,而不是样本的某个点,属于基础题。3.下列几个命题中,真命题是(

)A.l,m.n是空间的三条不同直线,若m⊥l,n⊥l,则m∥nB.α,β,γ是空间的三个不同平面,若α⊥γ,β⊥γ,则α∥βC.两条异面直线所成的角的范围是(0,π)D.两个平面相交但不垂直,直线m?α,则在平面β内不一定存在直线与m平行,但一定存在直线与垂直参考答案:D【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】由垂直于同一条直线的两直线的位置关系判断A;由垂直于同一平面的两平面的位置关系判断B;由异面直线所成角的范围判断C;设平面α、β的交线为n,当m与n不平行时β内不存在直线与m平行,但不论m在α内的位置如何,由两个平面相交但不垂直,可知m在平面β内的射影直线存在,平面β内垂直于m在β内射影的直线必与m垂直.【解答】解:由m⊥l,n⊥l,可得m,n的位置关系有三种,平行、相交和异面,∴选项A不正确;由α⊥γ,β⊥γ,可得α∥β或α与β相交,∴选项B不正确;两条异面直线所成的角的范围是(0,],∴选项C不正确;两个平面α、β相交但不垂直,设交线为n,直线m?α,只有当m∥n时,在平面β内存在直线与m平行,否则在平面β内不存在直线与m平行;但平面β内垂直于m在β内射影的直线必与m垂直.∴选项D正确.故选:D.【点评】本题考查了命题的真假判断与应用,考查了空间中直线与直线,平面与平面间的位置关系,考查了学生的空间思维和想象能力,是中档题.4.数列前n项的和为(

)A.

B.

C.

D.参考答案:B5.在△ABC中,已知a=8,B=60°,C=75°,则b等于()A.4 B. C.4 D.参考答案:A【考点】正弦定理.【分析】先求得A,进而利用正弦定理求得b的值.【解答】解:A=180°﹣B﹣C=45°,由正弦定理知=,∴b===4,故选A.【点评】本题主要考查了正弦定理的运用.考查了学生对基础公式的熟练应用.6.已知集合M={﹣3,﹣2,﹣1},N={x|(x+2)(x﹣3)<0},则M∩N=()A.{﹣1} B.{﹣2,﹣1} C.{﹣2,﹣1} D.{﹣3,3}参考答案:A【考点】交集及其运算.【分析】求出集合N的等价条件,结合交集的定义进行求解即可.【解答】解:N={x|(x+2)(x﹣3)<0}={x|﹣2<x<3},∵M={﹣3,﹣2,﹣1},∴M∩N={﹣1},故选:A7.下图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是(

)A.

B.

D.参考答案:A8.已知点是椭圆上的动点,、为椭圆的左、右焦点,坐标原点,若是的角平分线上的一点,且,则的取值范围是

A.(0,3)

B.()

C.(0,4)

D.(0,)参考答案:D略9.i为虚数单位,(1+i)=(1﹣i)2,则|z|=()A.1 B.2 C. D.参考答案:C【考点】A8:复数求模.【分析】通过设z=a+bi,可得=a﹣bi,利用(1+i)=(1﹣i)2,可得=﹣1﹣i,进而可得结论.【解答】解:设z=a+bi,则=a﹣bi,∵(1+i)=(1﹣i)2,∴=======﹣1﹣i,∴z=﹣1+i,∴|z|==,故选:C.10.在等差数列中,已知a=2,a+a=13,则a+a+a=(

)A.40

B.42

C.43

D.45参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知,则=

.参考答案:12.已知圆的弦的中点为,则弦的长为

.参考答案:413.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.3,乙击中敌机的概率为0.5,敌机被击中的概率为

.参考答案:0.65【考点】C5:互斥事件的概率加法公式;C9:相互独立事件的概率乘法公式.【分析】敌机被击中的对立事件是甲、乙同时没有击中,由此利用对立事件概率计算公式能求出敌机被击中的概率.【解答】解:敌机被击中的对立事件是甲、乙同时没有击中,设A表示“甲击中”,B表示“乙击中”,由已知得P(A)=0.3,P(B)=0.5,∴敌机被击中的概率为:p=1﹣P()P()=1﹣(1﹣0.3)(1﹣0.5)=0.65.故答案为:0.65.14.设抛物线的焦点为F,准线为l,P为抛物线上一点,PAl,A为垂足,如果直线AF的斜率为,那么|PF|=

参考答案:815.若,则

.参考答案:416.已知函数,若在区间上不是单调函数,则的取值范围为________________.参考答案:.分析:由题意得,因为在区间上不单调,故在区间上有解,分离参数后通过求函数的值域可得所求的范围.详解:∵,∴.∵在区间上不单调,∴在区间上有解,即方程在区间上有解,∴方程在区间上有解.令,则,∴函数在区间上单调递增,在区间上单调递减,∴当时,取得最大值,且最大值为.又.∴.又由题意得在直线两侧须有函数的图象,∴.∴实数的取值范围为.点睛:解答本题时注意转化的思想方法在解题中的应用,将函数不单调的问题化为导函数在给定区间上有变号零点的问题处理,然后通过分离参数又将问题转化为求函数的值域的问题,利用转化的方法解题时还要注意转化的合理性和准确性.17.把一根长为7米的铁丝截下两段(也可以直接截成两段),这两段的长度差不超过1米,分别以这两段为圆的周长围成两个圆,则这两个圆的面积之和的最大值为

参考答案:解析:设这两段的长度分别为米、米则、满足关系,其平面区域为右上图所示阴影部分,两圆的面积之和为,看成是个圆的方程,这个圆经过点或时,最大,最大值平米。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知P(0,﹣1)是椭圆C的下顶点,F是椭圆C的右焦点,直线PF与椭圆C的另一个交点为Q,满足.(1)求椭圆C的标准方程;(2)如图,过左顶点A作斜率为k(k>0)的直线l交椭圆C于点D,交y轴于点B.已知M为AD的中点,是否存在定点N,使得对于任意的k(k>0)都有OM⊥BN,若存在,求出点N的坐标,若不存在,说明理由.参考答案:【考点】椭圆的简单性质.【分析】(1)P(0,﹣1)是椭圆C的下顶点,可设椭圆的标准方程为:+y2=1.右焦点F(c,0).由,可得Q,代入椭圆C的方程可得:+=1,又b2=a2﹣c2=1,解得a即可得出.(2)直线l的方程为:y=k(x+2),与椭圆方程联立化为:(x+2)[4k2(x+2)+(x﹣2)]=0,可得D(,).可得AD的中点M,可得kOM.直线l的方程为:y=k(x+2),可得B(0,2k).假设存在定点N(m,n)(m≠0),使得OM⊥BN,则kOM?kBN=﹣1,化简即可得出.【解答】解:(1)∵P(0,﹣1)是椭圆C的下顶点,可设椭圆的标准方程为:+y2=1.右焦点F(c,0).由,可得Q,代入椭圆C的方程可得:+=1,∴4c2=3a2,又b2=a2﹣c2=1,解得a=2.∴椭圆C的标准方程为=1.(2)直线l的方程为:y=k(x+2),联立,消去y化为:(x+2)[4k2(x+2)+(x﹣2)]=0,∴x1=﹣2,x2=.由xD=,可得yD=k(xD+2)=.∴D(,).由点M为AD的中点,可得M,可得kOM=﹣.直线l的方程为:y=k(x+2),令x=0,解得y=2k,可得B(0,2k).假设存在定点N(m,n)(m≠0),使得OM⊥BN,则kOM?kBN=﹣1,∴=﹣1,化为(4m+2)k﹣n=0恒成立,由,解得,因此存在定点N.使得对于任意的k(k>0)都有OM⊥BN.19.某电视台拟举行由选手报名参加的比赛类型的娱乐节目,选手进入正赛前需通过海选,参加海选的选手可以参加A、B、C三个测试项目,只需通过一项测试即可停止测试,通过海选.若通过海选的人数超过预定正赛参赛人数,则优先考虑参加海选测试次数少的选手进入正赛.当某选手三项测试均未通过,则被淘汰.现已知甲选手通过项目A、B、C测试的概率为分别为、、,且通过各次测试的事件相互独立. (Ⅰ)若甲选手先测试A项目,再测试B项目,后测试C项目,求他通过海选的概率;若改变测试顺序,对他通过海选的概率是否有影响?说明理由. (Ⅱ)若甲选手按某种顺序参加海选测试,第一项能通过的概率为p1,第二项能通过的概率为p2,第三项能通过的概率为p3,设他结束测试时已参加测试的次数记为ξ,求ξ的分布列和期望(用p1、p2、p3表示);并说明甲选手按怎样的测试顺序更有利于他进入正赛. 参考答案:【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列. 【专题】计算题;转化思想;综合法;概率与统计. 【分析】(Ⅰ)依题意,先求出甲选手不能通过海选的概率,从而得到甲选手能通过海选的概率,无论按什么顺序,其能通过海选的概率均为. (Ⅱ)依题意ξ的所有可能取值为1、2、3.分别求出相应的概率,由此能求出ξ的分布列和期望(用p1、p2、p3表示),并能求出甲选手按怎样的测试顺序更有利于他进入正赛. 【解答】解:(Ⅰ)依题意,甲选手不能通过海选的概率为(1﹣)(1﹣)(1﹣), 故甲选手能通过海选的概率为1﹣(1﹣)(1﹣)(1﹣)=.…..(3分) 若改变测试顺序对他通过海选的概率没有影响, 因为无论按什么顺序,其不能通过的概率均为(1﹣)(1﹣)(1﹣)=, 即无论按什么顺序,其能通过海选的概率均为.…..(5分) (Ⅱ)依题意ξ的所有可能取值为1、2、3. p(ξ=1)=p1, p(ξ=2)=(1﹣p1)p2, p(ξ=3)=(1﹣p1)(1﹣p2). 故ξ的分布列为: ξ123Pp1(1﹣p1)p2(1﹣p1)(1﹣p2)….(8分) Eξ=p1+2(1﹣p1)p2+3(1﹣p1)(1﹣p2)…(10分) 分别计算当甲选手按C→B→A,C→A→B,B→A→C,B→C→A,A→B→C,A→C→B, 得甲选手按C→B→A参加测试时,Eξ最小, ∵参加测试的次数少的选手优先进入正赛,故该选手选择将自己的优势项目放在前面, 即按C→B→A参加测试更有利于进入正赛.….(12分) 【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式的合理运用. 20.(本小题满分13分)椭圆的离心率为,且以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)已知直线过点且与开口向上,顶点在原点的抛物线切于第二象限的一点,直线与椭圆交于两点,与轴交于点,若,,且,求抛物线的标准方程.参考答案:(1)由题意知,,即………………1分又,………………2分故椭圆的方程为………………4分(2)设抛物线的方程为,直线与抛物线的切点为设切线的斜率为,则切线的方程为,联立方程,由相切得,则直线的斜率为则可得直线的方程为

………………6分直线过点

即在第二象限

直线的方程为………………8分代入椭圆方程整理得设

则………10分由,,得

抛物线的标准方程为………………13分21.(本小题满分16分)如图,在边长为a的菱形ABCD中,,E,F是PA和AB的中点。(1)求证:EF||平面PBC;(2)求E到平面PBC的距离。参考答案:

在直角三角形FBH中,,

故点E到平面PBC的距离等于点F到平面PBC的距离,等于。22.在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若圆心P到直线2x﹣y=0的距离为,求圆P的方程.参考答案:【考点】直线与圆的位置关系.【专题】综合题;方程思想;综合法;直线与圆.【分析】(Ⅰ)设圆心为P(a,b),半径为R,由题意知R2﹣b2=2,R2﹣a2=3,由此能求出圆心P的轨迹方程.(Ⅱ)由题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论