2022年山东省济宁市鲁桥镇第一中学数学九年级上册期末复习检测模拟试题含解析_第1页
2022年山东省济宁市鲁桥镇第一中学数学九年级上册期末复习检测模拟试题含解析_第2页
2022年山东省济宁市鲁桥镇第一中学数学九年级上册期末复习检测模拟试题含解析_第3页
2022年山东省济宁市鲁桥镇第一中学数学九年级上册期末复习检测模拟试题含解析_第4页
2022年山东省济宁市鲁桥镇第一中学数学九年级上册期末复习检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,为的直径延长到点,过点作的切线,切点为,连接,为圆上一点,则的度数为()A. B. C. D.2.在中,,,若,则的长为()A. B. C. D.3.已知线段,是线段的黄金分割点,则的长度为()A. B. C.或 D.以上都不对4.如图,是直角三角形,,,点在反比例函数的图象上.若点在反比例函数的图象上,则的值为()A.2 B.-2 C.4 D.-45.已知为常数,点在第二象限,则关于的方程根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.无法判断6.若反比例函数y=的图象经过点(2,3),则它的图象也一定经过的点是()A. B. C. D.7.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A.25° B.50° C.65° D.75°8.如图,下列四个三角形中,与相似的是()A. B. C. D.9.如图,分别是的边上的点,且,相交于点,若,则的值为()A. B. C. D.10.计算的结果等于()A.-6 B.6 C.-9 D.9二、填空题(每小题3分,共24分)11.如图,扇形OAB,∠AOB=90,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的面积比是.12.如图,⊙O的半径为2,弦BC=2,点A是优弧BC上一动点(不包括端点),△ABC的高BD、CE相交于点F,连结ED.下列四个结论:①∠A始终为60°;②当∠ABC=45°时,AE=EF;③当△ABC为锐角三角形时,ED=;④线段ED的垂直平分线必平分弦BC.其中正确的结论是_____.(把你认为正确结论的序号都填上)13.已知:如图,△ABC的面积为16,点D、E分别是边AB、AC的中点,则△ADE的面积为______.14.如图,正五边形内接于,为上一点,连接,则的度数为__________.15.120°的圆心角对的弧长是6π,则此弧所在圆的半径是_____.16.已知,P为等边三角形ABC内一点,PA=3,PB=4,PC=5,则S△ABC=_____.17.如图,在△ABC中,∠A=30°,∠B=45°,BC=cm,则AB的长为_____.18.方程的两根为,,则=.三、解答题(共66分)19.(10分)网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和5.832份万件,假定每月投递的快递件数的增长率相同.(1)求该快递公司投递的快递件数的月平均增长率;(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年9月份的投递任务?20.(6分)如图1,内接于,AD是直径,的平分线交BD于H,交于点C,连接DC并延长,交AB的延长线于点E.(1)求证:;(2)若,求的值(3)如图2,连接CB并延长,交DA的延长线于点F,若,求的面积.21.(6分)如图,AG是∠PAQ的平分线,点E在AQ上,以AE为直径的⊙0交AG于点D,过点D作AP的垂线,垂足为点C,交AQ于点B.(1)求证:直线BC是⊙O的切线;(2)若⊙O的半径为6,AC=2CD,求BD的长22.(8分)如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,3),C(﹣4,1).以原点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C',其中点A,B,C旋转后的对应点分别为点A',B',C'.(1)画出△A'B'C',并写出点A',B',C'的坐标;(2)求经过点B',B,A三点的抛物线对应的函数解析式.23.(8分)阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为连个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解;各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想——转化,即把未知转化为已知来求解.用“转化”的数学思想,我们还可以解一些新的方程.例如,解一元三次方程,通过因式分解把它转化为,通过解方程和,可得原方程的解.再例如,解根号下含有来知数的方程:,通过两边同时平方把它转化为,解得:.因为,且,所以不是原方程的根,是原方程的解.(1)问题:方程的解是,__________,__________;(2)拓展:求方程的解.24.(8分)如图,在中,是边上的高,且.

(1)求的度数;(2)在(1)的条件下,若,求的长.25.(10分)春节前,某超市从厂家购进某商品,已知该商品每个的成本价为30元,经市场调查发现,该商品每天的销售量(个)与销售单价(元)之间满足一次函数关系,当该商晶每个售价为40元时,每天可卖出300个;当该商晶每个售价为60元时,每天可卖出100个.(1)与之间的函数关系式为__________________(不要求写出的取值范围);(2)若超市老板想达到每天不低于220个的销售量,则该商品每个售价定为多少元时,每天的销售利润最大?最大利润是多少元?26.(10分)计算:(1)(2)解方程:

参考答案一、选择题(每小题3分,共30分)1、A【分析】连接OC,根据切线的性质和直角三角形两锐角互余求出的度数,然后根据圆周角定理即可求出的度数.【详解】连接OC∵PC为的切线∴∵故选:A.【点睛】本题主要考查切线的性质,直角三角形两锐角互余和圆周角定理,掌握切线的性质,直角三角形两锐角互余和圆周角定理是解题的关键.2、A【解析】根据解直角三角形的三角函数解答即可【详解】如图,∵cos53°=,∴AB=故选A【点睛】此题考查解直角三角形的三角函数解,难度不大3、C【分析】根据黄金分割公式即可求出.【详解】∵线段,是线段的黄金分割点,当,∴;当,∴,∴.故选:C.【点睛】此题考查黄金分割的公式,熟记公式是解题的关键.4、D【分析】要求函数的解析式只要求出点的坐标就可以,过点、作轴,轴,分别于、,根据条件得到,得到:,然后用待定系数法即可.【详解】过点、作轴,轴,分别于、,设点的坐标是,则,,,,,,,,,,,,因为点在反比例函数的图象上,则,点在反比例函数的图象上,点的坐标是,.故选:.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.5、B【分析】根据判别式即可求出答案.【详解】解:由题意可知:,

∴,

故选:B.【点睛】本题考查的是一元二次方程根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.6、A【详解】解:根据题意得k=2×3=6,所以反比例函数解析式为y=,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y=的图象上.故选A.【点睛】本题考查反比例函数图象上点的坐标特征.7、C【分析】根据圆周角定理得出∠AOC=2∠ABC,求出∠AOC=50°,再根据等腰三角形的性质和三角形内角和定理求出即可.【详解】解:∵根据圆周角定理得:∠AOC=2∠ABC,∵∠ABC+∠AOC=75°,∴∠AOC=×75°=50°,∵OA=OC,∴∠OAC=∠OCA=(180°﹣∠AOC)=65°,故选C.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识点,能求出∠AOC是解此题的关键.8、C【分析】△ABC是等腰三角形,底角是75°,则顶角是30°,结合各选项是否符合相似的条件即可.【详解】由题图可知,,所以∠B=∠C=75°,所以.根据两边成比例且夹角相等的两个三角形相似知,与相似的是项中的三角形故选:C.【点睛】此题主要考查等腰三角形的性质,三角形内角和定理和相似三角形的判定的理解和掌握,此题难度不大,但综合性较强.9、C【分析】根据题意可证明,再利用相似三角形的性质,相似三角形面积的比等于相似比的平方,即可得出对应边的比值.【详解】解:∵∴∴根据相似三角形面积的比等于相似比的平方,可知对应边的比为.故选:C.【点睛】本题考查的知识点是相似三角形的性质,主要有①相似三角形周长的比等于相似比;②相似三角形面积的比等于相似比的平方;③相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.10、D【分析】根据有理数乘方运算的法则计算即可.【详解】解:,故选:D.【点睛】本题考查了有理数的乘方,掌握运算法则是解题的关键.二、填空题(每小题3分,共24分)11、【详解】依题意连接OC则P在OC上,连接PF,PE则PF⊥OA,PE⊥OB,由切线长定理可知四边形OEPF为正方形,且其边长即⊙P的半径(设⊙P的半径为r)∴OP=又OC=OP+PC=+r=(1+)r即扇形OAB的(1+)r,∴12、①②③④【分析】①延长CO交⊙O于点G,如图1.在Rt△BGC中,运用三角函数就可解决问题;②只需证到△BEF≌△CEA即可;③易证△AEC∽△ADB,则,从而可证到△AED∽△ACB,则有.由∠A=60°可得到,进而可得到ED=;④取BC中点H,连接EH、DH,根据直角三角形斜边上的中线等于斜边的一半可得EH=DH=BC,所以线段ED的垂直平分线必平分弦BC.【详解】解:①延长CO交⊙O于点G,如图1.则有∠BGC=∠BAC.∵CG为⊙O的直径,∴∠CBG=90°.∴sin∠BGC=.∴∠BGC=60°.∴∠BAC=60°.故①正确.②如图2,∵∠ABC=25°,CE⊥AB,即∠BEC=90°,∴∠ECB=25°=∠EBC.∴EB=EC.∵CE⊥AB,BD⊥AC,∴∠BEC=∠BDC=90°.∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°.∵∠EFB=∠DFC,∴∠EBF=∠DCF.在△BEF和△CEA中,,∴△BEF≌△CEA.∴AE=EF.故②正确.③如图3,∵∠AEC=∠ADB=90°,∠A=∠A,∴△AEC∽△ADB.∴.∵∠A=∠A,∴△AED∽△ACB.∴.∵cosA==cos60°=,∴.∴ED=BC=.故③正确.④取BC中点H,连接EH、DH,如图3、图2.∵∠BEC=∠CDB=90°,点H为BC的中点,∴EH=DH=BC.∴点H在线段DE的垂直平分线上,即线段ED的垂直平分线平分弦BC.故④正确.故答案为①②③④.【点睛】本题考查了圆周角定理、锐角三角函数的定义、特殊角的三角函数值、全等三角形的判定与性质、相似三角形的判定与性质、直角三角形斜边上的中线等于斜边的一半、到线段两个端点距离相等的点在线段的垂直平分线上等知识,综合性比较强,是一道好题.13、4【分析】根据三角形中位线的性质可得DE//BC,,即可证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方即可得答案.【详解】∵点D、E分别是边AB、AC的中点,∴DE为△ABC的中位线,∴DE//BC,,∴△ADE∽△ABC,∴=,∵△ABC的面积为16,∴S△ADE=×16=4.故答案为:4【点睛】本题考查三角形中位线的性质及相似三角形的判定与性质,三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握相似三角形的面积比等于相似比的平方是解题关键.14、【分析】连接OA,OE.根据正五边形求出∠AOE的度数,再根据圆的有关性质即可解答【详解】如图,连接OA,OE.∵ABCDE是正五边形,∴∠AOE==72°,∴∠APE=∠AOE=36°【点睛】本题考查了正多边形和圆的有关性质,解题的关键是熟练掌握想关性质并且灵活运用题目的已知条件.15、1【分析】根据弧长的计算公式l=,将n及l的值代入即可得出半径r的值【详解】解:根据弧长的公式l=,得到:6π=,解得r=1.故答案:1.【点睛】此题考查弧长的计算,掌握计算公式是解题关键16、【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在Rt△APF中利用三角函数求得AF和PF的长,则在Rt△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.【详解】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.∴△ABC的面积=AB2=(25+12)=;故答案为:.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的判定与性质以及勾股定理的逆定理.17、【分析】根据题意过点C作CD⊥AB,根据∠B=45°,得CD=BD,根据勾股定理和BC=得出BD,再根据∠A=30°,得出AD,进而分析计算得出AB即可.【详解】解;过点C作CD⊥AB,交AB于D.∵∠B=45°,∴CD=BD,∵BC=,∴BD=,∵∠A=30°,∴tan30°=,∴AD===3,∴AB=AD+BD=.故答案为:.【点睛】本题考查解直角三角形,熟练应用三角函数的定义是解题的关键.18、.【解析】试题分析:∵方程的两根为,,∴,,∴===.故答案为.考点:根与系数的关系.三、解答题(共66分)19、(1)该快递公司投递的快递件数的月平均增长率为8%;(2)按此快递增长速度,不增加人手的情况下,不能完成今年9月份的投递任务,见解析【分析】(1)设该快递公司投递的快递件数的月平均增长率为x,根据“5月份快递件数×(1+增长率)2=7月份快递件数”列出关于x的方程,解之可得答案;(2)分别计算出9月份的快递件数和8名快递小哥可投递的总件数,据此可得答案.【详解】(1)设该快递公司投递的快递件数的月平均增长率为x,根据题意,得:,解得:=0.08=8%,=﹣2.08(舍),答:该快递公司投递的快递件数的月平均增长率为8%;(2)9月份的快递件数为(万件),而0.8×8=6.4<6.8,所以按此快递增长速度,不增加人手的情况下,不能完成今年9月份的投递任务.【点睛】本题主要了考查一元二次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.20、(1)见解析;(2);(3)【分析】(1)根据直径所对的圆周角是直角可得,然后利用ASA判定△ACD≌△ACE即可推出AE=AD;(2)连接OC交BD于G,设,根据垂径定理的推论可得出OC垂直平分BD,进而推出OG为中位线,再判定,利用对应边成比例即可求出的值;(3)连接OC交BD于G,由(2)可知:OC∥AB,OG=AB,然后利用ASA判定△BHA≌△GHC,设,则,再判定,利用对应边成比例求出m的值,进而得到AB和AD的长,再用勾股定理求出BD,可求出△BED的面积,由C为DE的中点可得△BEC为△BED面积的一半,即可得出答案.【详解】(1)证明:∵AD是的直径∵AC平分在△ACD和△ACE中,∵∠ACD=∠ACE,AC=AC,∠DAC=∠EAC∴△ACD≌△ACE(ASA)(2)如图,连接OC交BD于G,,设,则,OC=AD=∴OC垂直平分BD又∵O为AD的中点∴OG为△ABD的中位线∴OC∥AB,OG=,CG=(3)如图,连接OC交BD于G,由(2)可知:OC∥AB,OG=AB∴∠BHA=∠GCH在△BHA和△GHC中,∵∠BHA=∠GCH,AH=CH,∠BHA=∠GHC∴设,则又,∴,∵AD是的直径又【点睛】本题考查了圆周角定理,垂径定理的推论,全等三角形的判定和性质,相似三角形的判定和性质,以及勾股定理,是一道圆的综合问题,解题的关键是连接OC利用垂径定理得到中位线.21、(1)证明见详解;(2)8.【分析】(1)根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;(2))在Rt△ACD中,设CD=a,则AC=2a,AD=,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.【详解】(1)证明:连接OD,∵AG是∠HAF的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴,由(1)知:OD∥AC,解得BD=【点睛】本题考查切线的判定、勾股定理、相似三角形的判定与性质,根据相似三角形的性质列方程解决问题是关键.22、(1)见解析;(2)抛物线的解析式为y=﹣x2+x+1.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)设抛物线的解析式为y=a(x+2)(x﹣1),把B(0,1)代入求出a即可.【详解】解:(1)如图△A'B'C'即为所求.A′(0,2),B′(1,0),C′(1,4)(2)设抛物线的解析式为y=a(x+2)(x﹣1),把B(0,1)代入得到a=﹣,∴抛物线的解析式为y=﹣x2+x+1.【点睛】本题考查的知识点是求抛物线解析式以及图形的旋转变换,根据旋转的性质得出A′,B′,C′的坐标是解此题的关键.23、(1);(2)【分析】(1)利用因式分解法,即可得出结论;(2)先方程两边平方转化成整式方程,再求一元二次方程的解,最后必须检验.【详解】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论