2023届福建省泉港一中学、城东中学数学九年级上册期末综合测试试题含解析_第1页
2023届福建省泉港一中学、城东中学数学九年级上册期末综合测试试题含解析_第2页
2023届福建省泉港一中学、城东中学数学九年级上册期末综合测试试题含解析_第3页
2023届福建省泉港一中学、城东中学数学九年级上册期末综合测试试题含解析_第4页
2023届福建省泉港一中学、城东中学数学九年级上册期末综合测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+52.将抛物线的图象向右平移1个单位,再向下平移两个单位后,则所得抛物线解析式为()A. B. C. D.3.下列y和x之间的函数表达式中,是二次函数的是()A. B. C. D.y=x-34.若是方程的一个根.则代数式的值是()A. B. C. D.5.已知二次函数y=x2﹣6x+m(m是实数),当自变量任取x1,x2时,分别与之对应的函数值y1,y2满足y1>y2,则x1,x2应满足的关系式是()A.x1﹣3<x2﹣3 B.x1﹣3>x2﹣3 C.|x1﹣3|<|x2﹣3| D.|x1﹣3|>|x2﹣3|6.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高(点在同一条直线上).已知小明身高是,则楼高为()A. B. C. D.7.观察下列图形,是中心对称图形的是()A. B. C. D.8.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为()A. B. C.1 D.9.如图,在平行四边形中,为的中点,为上一点,交于点,,则的长为()A. B. C. D.10.关于的方程的一个根是,则它的另一个根是()A. B. C. D.二、填空题(每小题3分,共24分)11.二次函数y=ax2+4ax+c的最大值为4,且图象过点(-3,0),则该二次函数的解析式为____________.12.矩形的对角线长13,一边长为5,则它的面积为_____.13.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.14.如图,点P在函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于_____.15.二次函数(a,b,c为常数且a≠0)中的与的部分对应值如下表:013353现给出如下四个结论:①;②当时,的值随值的增大而减小;③是方程的一个根;④当时,,其中正确结论的序号为:____.

16.已知抛物线,当时,的取值范围是______________17.以原点O为位似中心,将△AOB放大到原来的2倍,若点A的坐标为(2,3),则点A的对应点的坐标为_______.18.如图,已知⊙P的半径为4,圆心P在抛物线y=x2﹣2x﹣3上运动,当⊙P与x轴相切时,则圆心P的坐标为_____.三、解答题(共66分)19.(10分)解方程(1)x2﹣6x﹣7=0(2)(x﹣1)(x+3)=1220.(6分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.21.(6分)2016年3月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;(2)扇形统计图中,m=,n=;C等级对应扇形有圆心角为度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.22.(8分)已知矩形中,,,点、分别在边、上,将四边形沿直线翻折,点、的对称点分别记为、.(1)当时,若点恰好落在线段上,求的长;(2)设,若翻折后存在点落在线段上,则的取值范围是______.23.(8分)近期江苏省各地均发布“雾霾”黄色预警,我市某口罩厂商生产一种新型口罩产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系满足下表.销售单价x(元/件)…20253040…每月销售量y(万件)…60504020…(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并直接写出y与x之间的函数关系式为__________;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?24.(8分)某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元,在销售过程中发现,月销售量(件)与销售单价(万元)之间存在着如图所示的一次函数关系(1)求关于的函数关系式.(2)试写出该公司销售该种产品的月获利(万元)关于销售单价(万元)的函数关系式,当销售单价为何值时,月获利最大?并求这个最大值.(月获利=月销售额一月销售产品总进价一月总开支)25.(10分)如图,抛物线的图象经过点,顶点的纵坐标为,与轴交于两点.(1)求抛物线的解析式.(2)连接为线段上一点,当时,求点的坐标.26.(10分)(1)已知如图1,在中,,,点在内部,点在外部,满足,且.求证:.(2)已知如图2,在等边内有一点,满足,,,求的度数.

参考答案一、选择题(每小题3分,共30分)1、A【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.2、A【分析】根据二次函数图像左加右减,上加下减的平移规律即可确定答案.【详解】解:抛物线y=-3x2向右平移1个单位的解析式为:y=-3(x-1)2;再向下平移2个单位,得:y=-3(x-1)2-2.故选:A.【点睛】本题主要考查了二次函数图像的平移,掌握“左加右减,上加下减”的平移规律是解答本题的关键.3、A【分析】根据二次函数的定义(一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数)进行判断.【详解】A.可化为,符合二次函数的定义,故本选项正确;B.,该函数等式右边最高次数为3,故不符合二次函数的定义,故本选项错误;C.,该函数等式的右边是分式,不是整式,不符合二次函数的定义,故本选项错误;D.y=x-3,属于一次函数,故本选项错误.故选:A.【点睛】本题考查了二次函数的定义.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,化简后最高次必须为二次,且二次项系数不为0.4、C【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:∴故答案为:C.【点睛】本题考查的知识点是根据一元二次方程的解求代数式的值,解题的关键是将已给代数式进行变形,使之与所给条件有关系,即可得解.5、D【分析】先利用二次函数的性质确定抛物线的对称轴为直线x=3,然后根据离对称轴越远的点对应的函数值越大可得到|x1-3|>|x2-3|.【详解】解:抛物线的对称轴为直线x=-=3,∵y1>y2,

∴点(x1,y1)比点(x2,y2)到直线x=3的距离要大,

∴|x1-3|>|x2-3|.

故选D.【点睛】本题考查二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.6、B【分析】过点C作CN⊥AB,可得四边形CDME、ACDN是矩形,即可证明,从而得出AN,进而求得AB的长.【详解】过点C作CN⊥AB,垂足为N,交EF于M点,

∴四边形CDEM、BDCN是矩形,

∴,

∴,依题意知,EF∥AB,

∴,

∴,即:,

∴AN=20,

(米),

答:楼高为21.2米.

故选:B.【点睛】本题主要考查了相似三角形的应用,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.7、C【分析】根据中心对称图形的概念判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意.故选:C.【点睛】本题考查了中心对称图形的识别,熟练掌握概念是解题的关键.8、C【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.9、B【分析】延长,交于,由,,即可得出答案.【详解】如图所示,延长CB交FG与点H∵四边形ABCD为平行四边形∴BC=AD=DF+AF=6cm,BC∥AD∴∠FAE=∠HBE又∵E是AB的中点∴AE=BE在△AEF和△BEH中∴△AEF≌△BEH(ASA)∴BH=AF=2cm∴CH=8cm∵BC∥CD∴∠FAG=∠HCG又∠FGA=∠CGH∴△AGF∽△CGH∴∴CG=4AG=12cm∴AC=AG+CG=15cm故答案选择B.【点睛】本题考查了全等三角形的判定以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解决本题的关键.10、C【分析】根据根与系数的关系即可求出答案.【详解】由根与系数的关系可知:x1x2=−3,∴x2=−1,故选:C.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.二、填空题(每小题3分,共24分)11、y=-4x2-16x-12【解析】∵抛物线的对称轴为直线x==﹣2,∴抛物线的顶点坐标为(﹣2,4),又∵抛物线过点(﹣3,0),∴,解得:a=﹣4,c=﹣12,则抛物线的解析式为y=-4x2-16x-12.故答案为y=-4x2-16x-12.【点睛】本题考查用待定系数法求二次函数解析式,解此题的关键在于先根据顶点坐标与函数系数的关系,求得顶点坐标,再用待定系数法求函数解析式即可.12、1【分析】先运用勾股定理求出另一条边,再运用矩形面积公式求出它的面积.【详解】∵对角线长为13,一边长为5,∴另一条边长==12,∴S矩形=12×5=1;故答案为:1.【点睛】本题考查了矩形的性质以及勾股定理,本题关键是运用勾股定理求出另一条边.13、﹣1【详解】∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.14、-1【解析】由反比例函数系数k的几何意义结合△APB的面积为4即可得出k=±1,再根据反比例函数在第二象限有图象即可得出k=﹣1,此题得解.【详解】∵点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,∴S△APB=|k|=4,∴k=±1.又∵反比例函数在第二象限有图象,∴k=﹣1.故答案为﹣1.【点睛】本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解题的关键.15、①②③④【分析】先利用待定系数法求得的值,<0可判断①;对称轴为直线,利用二次函数的性质可判断②;方程即,解得,可判断③;时,;当时,,且函数有最大值,则当时,,即可判断④.【详解】∵时,时,时,∴,解得:,∴,故①正确;

∵对称轴为直线,∴当x>时,y的值随x值的增大而减小,故②正确;方程即,解得,∴是方程的一个根,故③正确;当时,,

当时,,∵,∴函数有最大值,

∴当时,,故④正确.

故答案为:①②③④.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,抛物线与x轴的交点,熟练掌握二次函数图象的性质是解题的关键.16、1≤y<9【分析】根据二次函数的图象和性质求出抛物线在上的最大值和最小值即可.【详解】∴抛物线开口向上∴当时,y有最小值,最小值为1当时,y有最大值,最小值为∴当时,的取值范围是故答案为:.【点睛】本题主要考查二次函数在一定范围内的最大值和最小值,掌握二次函数的图象和性质是解题的关键.17、(4,6)或(-4,-6)【分析】由题意根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】解:∵点A的坐标分别为(2,3),以原点O为位似中心,把△△AOB放大为原来的2倍,则A′的坐标是:(4,6)或(-4,-6).故答案为:(4,6)或(-4,-6).【点睛】本题考查位似图形与坐标的关系,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于k或-k.18、(1+2,4),(1﹣2,4),(1,﹣4)【分析】根据已知⊙P的半径为4和⊙P与x轴相切得出P点的纵坐标,进而得出其横坐标,即可得出答案.【详解】解:当半径为4的⊙P与x轴相切时,此时P点纵坐标为4或﹣4,∴当y=4时,4=x2﹣2x﹣3,解得:x1=1+2,x2=1﹣2,∴此时P点坐标为:(1+2,4),(1﹣2,4),当y=﹣4时,﹣4=x2﹣2x﹣3,解得:x1=x2=1,∴此时P点坐标为:(1,﹣4).综上所述:P点坐标为:(1+2,4),(1﹣2,4),(1,﹣4).故答案为:(1+2,4),(1﹣2,4),(1,﹣4).【点睛】此题是二次函数综合和切线的性质的综合题,解答时通过数形结合以得到P点纵坐标是解题关键。三、解答题(共66分)19、(1)x=7或x=﹣1(2)x=﹣5或x=3【分析】(1)方程两边同时加16,根据完全平方公式求解方程即可.(2)开括号,再移项合并同类项,根据十字相乘法求解方程即可.【详解】(1)∵x2﹣6x﹣7=0,∴x2﹣6x+9=16,∴(x﹣3)2=16,∴x﹣3=±4,∴x=7或x=﹣1;(2)原方程化为:x2+2x﹣15=0,∴(x+5)(x﹣3)=0,∴x=﹣5或x=3;【点睛】本题考查了解一元二次方程的问题,掌握解一元二次方程的方法是解题的关键.20、(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.21、(1)40,补图见解析;(2)10,40,144;(3)【解析】试题分析:(1)根据D等级的有12人,占总数的30%,即可求得总人数,利用总人数减去其它等级的人数求得B等级的人数,从而作出直方图;(2)根据百分比的定义求得m、n的值,利用360°乘以C等级所占的百分比即可求得对应的圆心角;(3)利用列举法即可求解.试题解析:(1)参加演讲比赛的学生共有:12÷30%=40(人),则B等级的人数是:40-4-16-12=8(人).(2)A所占的比例是:×100%=10%,C所占的百分比:×100%=40%.C等级对应扇形的圆心角是:360×40%=144°;(3)设A等级的小明用a表示,其他的几个学生用b、c、d表示.共有12种情况,其中小明参加的情况有6种,则P(小明参加比赛)=.考点:1.条形统计图;2.扇形统计图;3.列表法与树状图法.22、(1);(2)且.【分析】(1)过作于,延长交于点,如图1,易证∽,于是设,则,可得,然后在中根据勾股定理即可求出a的值,进而可得的长,设,则可用n的代数式表示,连接FB、,如图2,根据轴对称的性质易得,再在中,根据勾股定理即可求出n的值,于是可得结果;(2)仿(1)题的思路,在中,利用勾股定理可得关于x和m的方程,然后利用一元二次方程的根的判别式和二次函数的知识即可求出m的范围,再结合点的特殊位置可得m的最大值,从而可得答案.【详解】解:(1)∵四边形ABCD是矩形,∴AB∥CD,过作于,延长交于点,如图1,则AB∥CD∥QH,∴∽,∴,设,则,∴.在中,∵,∴,解得:或(舍去).∴,∴,设,则,连接FB、,如图2,则,在中,由勾股定理,得:,∴,解得:,∴;(2)如图1,∵,∴,设,则,∴.在中,∵,∴,整理,得:,若翻折后存在点落在线段上,则上述方程有实数根,即△≥0,∴,整理,得:,由二次函数的知识可得:,或(舍去),∵,∴,当x=m时,方程即为:,解得:,∴,又∵当点与点C重合时,m的值达到最大,即当x=0时,,解得:m=1.∴m的取值范围是:且.故答案为:且.【点睛】本题是矩形折叠综合题,主要考查了矩形的性质、轴对称的性质、相似三角形的判定和性质、勾股定理、一元二次方程的解法和根的判别式以及二次函数的性质等知识,综合性强、难度较大,熟练掌握折叠的性质和勾股定理、灵活利用方程的数学思想是解(1)题的关键,灵活应用一元二次方程的根的判别式和二次函数的知识是解(2)题的关键.23、(1)y=﹣2x+100;(2)当销售单价为28元或1元时,厂商每月获得的利润为41万元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.【分析】(1)直接利用待定系数法求出一次函数解析式;(2)根据利润=销售量×(销售单价﹣成本),代入代数式求出函数关系式,令利润z=41,求出x的值;(3)根据厂商每月的制造成本不超过51万元,以及成本价18元,得出销售单价的取值范围,进而得出最大利润.【详解】解:(1)由表格中数据可得:y与x之间的函数关系式为:y=kx+b,把(20,60),(25,50)代入得:解得:故y与x之间的函数关系式为:y=﹣2x+100;(2)设总利润为z,由题意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800;当z=41时,﹣2x2+136x﹣1800=41,解得:x1=28,x2=1.答:当销售单价为28元或1元时,厂商每月获得的利润为41万元;(3)∵厂商每月的制造成本不超过51万元,每件制造成本为18元,∴每月的生产量为:小于等于=30万件,y=﹣2x+100≤30,解得:x≥35,∵z=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∴图象开口向下,对称轴右侧z随x的增大而减小,∴x=35时,z最大为:510万元.当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.【点睛】本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式以及利用增减性求出最值.24、(1);(2)当x=10万元时,最大月获利为7万元【分析】(1)根据函数图象,利用待定系数法求解可得;(2)根据“总利润=单价利润×销售量-总开支”列出函数解析式,由二次函数的性质可得最值.【详解】(1)设y=kx+b,将点(6,5)、(8,4)代入,得:,解得:,∴;(2)根据题意得:z=(x-4)y-11=(x-4)(-x+8)-11=-x2+10x-43=-(x-10)2+7,∴当x=10万元时,最大月获利为7/r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论