版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些小球除颜色外都相同,其中有红球3个,黄球2个,蓝球若干,已知随机摸出一个球是红球的概率是,则随机摸出一个球是蓝球的概率是()A. B. C. D.2.如图,已知点在的边上,若,且,则()A. B. C. D.3.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1 C.与x轴有两个交点 D.顶点坐标是(1,2)4.在同一直角坐标系中,反比例函数y=与一次函数y=ax+b的图象可能是()A. B.C. D.5.如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位6.抛物线y=4x2﹣3的顶点坐标是()A.(0,3) B.(0,﹣3) C.(﹣3,0) D.(4,﹣3)7.若二次函数的图象的顶点在第一象限,且经过点(0,1)和(-1,0),则的值的变化范围是()A. B. C. D.8.如图,在圆心角为45°的扇形内有一正方形CDEF,其中点C、D在半径OA上,点F在半径OB上,点E在弧AB上,则扇形与正方形的面积比是()A.π:8 B.5π:8 C.π:4 D.π:49.如图,⊙O的直径长10,弦AB=8,M是弦AB上的动点,则OM的长的取值范围是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<510.下列事件中,属于必然事件的是()A.明天太阳从北边升起 B.实心铅球投入水中会下沉C.篮球队员在罚球线投篮一次,投中 D.抛出一枚硬币,落地后正面向上11.如图,将绕点顺时针旋转,得到,且点在上,下列说法错误的是()A.平分 B. C. D.12.⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定二、填空题(每题4分,共24分)13.抛物线的顶点坐标为______.14.将边长分别为,,的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______.15.设分别为一元二次方程的两个实数根,则____.16.计算:(π﹣3)0+(﹣)﹣2﹣(﹣1)2=_____.17.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.18.计算sin60°cos60°的值为_____.三、解答题(共78分)19.(8分)在矩形ABCD中,AB=3,AD=5,E是射线DC上的点,连接AE,将△ADE沿直线AE翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.20.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.(参考数据:,,,,,)21.(8分)如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.22.(10分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.(1)学生小红计划选修两门课程,请写出所有可能的选法;(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?23.(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,;(2)求在旋转过程中,CA所扫过的面积.24.(10分)(1)解方程:x(x﹣3)=x﹣3;(2)用配方法解方程:x2﹣10x+6=025.(12分)如图,放置于平面直角坐标系中,按下面要求画图:(1)画出绕原点逆时针旋转的.(2)求点在旋转过程中的路径长度.26.如图,已知一次函数分别交、轴于、两点,抛物线经过、两点,与轴的另一交点为.(1)求、的值及点的坐标;(2)动点从点出发,以每秒1个单位长度的速度向点运动,过作轴的垂线交抛物线于点,交线段于点.设运动时间为秒.①当为何值时,线段长度最大,最大值是多少?(如图1)②过点作,垂足为,连结,若与相似,求的值(如图2)
参考答案一、选择题(每题4分,共48分)1、D【分析】先求出口袋中蓝球的个数,再根据概率公式求出摸出一个球是蓝球的概率即可.【详解】设口袋中蓝球的个数有x个,根据题意得:=,解得:x=4,则随机摸出一个球是蓝球的概率是=;故选:D.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.2、D【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.3、D【解析】试题解析:二次函数y=(x-1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选D.4、D【分析】先根据一次函数图象经过的象限得出a、b的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】∵一次函数图象应该过第一、二、四象限,∴a<0,b>0,∴ab<0,∴反比例函数的图象经过二、四象限,故A选项错误,∵一次函数图象应该过第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函数的图象经过二、四象限,故B选项错误;∵一次函数图象应该过第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函数的图象经过一、三象限,故C选项错误;∵一次函数图象经过第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函数的图象经经过一、三象限,故D选项正确;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.5、A【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x轴对称.【详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6、B【分析】根据抛物线的顶点坐标为(0,b),可以直接写出该抛物线的顶点坐标,【详解】解:抛物线,该抛物线的顶点坐标为,故选:B.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.7、A【分析】代入两点的坐标可得,,所以,由抛物线的顶点在第一象限可得且,可得,再根据、,可得S的变化范围.【详解】将点(0,1)代入中可得将点(-1,0)代入中可得∴∵二次函数图象的顶点在第一象限∴对称轴且∴∵,∴∴故答案为:A.【点睛】本题考查了二次函数的系数问题,掌握二次函数的性质以及各系数间的关系是解题的关键.8、B【分析】连接OE,设正方形的边长为a.根据等腰直角三角形的性质,得OC=CF=a,在直角三角形OFC中,根据勾股定理列方程,用a表示出r的值,再根据扇形及正方形的面积公式求解.【详解】解:连接OE,设正方形的边长为a,则正方形CDEF的面积是a2,在Rt△OCF中,a2+(2a)2=r2,即r=a,扇形与正方形的面积比=:a2=:a2=5π:1.故选B.【点睛】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.9、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A.【点睛】本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.10、B【解析】必然事件就是一定会发生的事件,依据定义即可判断.【详解】A、明天太阳从北边升起是不可能事件,错误;B、实心铅球投入水中会下沉是必然事件,正确;C、篮球队员在罚球线投篮一次,投中是随机事件,错误;D、抛出一枚硬币,落地后正面向上是随机事件,错误;故选B.【点睛】考查的是必然事件、不可能事件、随机事件的概念,必然事件是指在一定条件下,一定发生的事件.11、C【分析】由题意根据旋转变换的性质,进行依次分析即可判断.【详解】解:解:∵△ABC绕点A顺时针旋转,旋转角是∠BAC,∴AB的对应边为AD,BC的对应边为DE,∠BAC对应角为∠DAE,∴AB=AD,DE=BC,∠BAC=∠DAE即平分,∴A,B,D选项正确,C选项不正确.故选:C.【点睛】本题考查旋转的性质,旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.12、A【解析】∵圆心O到直线l的距离d=3,⊙O的半径R=4,则d<R,∴直线和圆相交.故选A.二、填空题(每题4分,共24分)13、【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.14、【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴∴△AEN△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=同理可求BK=梯形BENK的面积:∴阴影部分的面积:故答案为:.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.15、-2025【分析】根据一元二次方程根与系数的关系即可得出,,将其代入中即可求出结论.【详解】解:,分别为一元二次方程的两个实数根,,,则.故答案为:.【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出,是解题的关键.16、1【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简,得出答案.【详解】原式=1+1﹣1=1.故答案为:1.【点睛】本题主要考查零指数幂的性质以及负整数指数幂的性质,牢记负整数指数幂的计算方法,是解题的关键.17、2【分析】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得可列方程k=9a+7=7b+4=5c+2(k,a,b,c都是正整数),然后根据整除的性质解答即可.【详解】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得:k=9a+7=7b+4=5c+2(k,a,b,c都是正整数)∴9a+7=5c+2,∴9a=5(c-1),∴a是5的倍数.不妨设a=5m(m为正整数),∴k=45m+7=7b+4,∴b=,∵b和m都是正整数,∴m的最小值为1.∴a=5m=2.故答案为:2.【点睛】本题考查了三元一次方程的应用,解答本题的关键是明确题意,列出相应的者方程,会根据整除性进一步设未知数.18、【分析】直接利用特殊角的三角函数值代入求出答案.【详解】原式=×.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.三、解答题(共78分)19、(1)证明见解析;(2);(3)、5、15、【分析】(1)利用同角的余角相等,证明∠CEF=∠AFB,即可解决问题;(2)过点F作FG⊥DC交DC与点G,交AB于点H,由△FGE∽△AHF得出AH=5GF,再利用勾股定理求解即可;(3)分①当∠EFC=90°时;②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD中,∠B=∠C=∠D=90°由折叠可得:∠D=∠EFA=90°∵∠EFA=∠C=90°∴∠CEF+∠CFE=∠CFE+∠AFB=90°∴∠CEF=∠AFB在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°△ABF∽△FCE(2)解:过点F作FG⊥DC交DC与点G,交AB于点H,则∠EGF=∠AHF=90°在矩形ABCD中,∠D=90°由折叠可得:∠D=∠EFA=90°,DE=EF=1,AD=AF=5∵∠EGF=∠EFA=90°∴∠GEF+∠GFE=∠AFH+∠GFE=90°∴∠GEF=∠AFH在△FGE和△AHF中∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF∴=∴=∴AH=5GF在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2∴(5GF)2+(5-GF)2=52∴GF=∴△EFC的面积为××2=;(3)解:①当∠EFC=90°时,A、F、C共线,如图所示:设DE=EF=x,则CE=3-x,∵AC=,∴CF=-x,∵∠CFE=∠D=90°,∠DCA=∠DCA,∴△CEF∽△CAD,∴,即,解得:ED=x=;②当∠ECF=90°时,如图所示:∵AD==5,AB=3,∴==4,设=x,则=3-x,∵∠DCB=∠ABC=90°,∴∽,∴,即,解得:x==;由折叠可得:,设,则,,在RT△中,∵,即9²+x²=(x+3)²,解得x==12,∴;③当∠CEF=90°时,AD=AF,此时四边形AFED是正方形,∴AF=AD=DE=5,综上所述,DE的长为:、5、15、.【点睛】本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.20、还需要航行的距离的长为20.4海里.【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.详解:由题知:,,.在中,,,(海里).在中,,,(海里).答:还需要航行的距离的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.21、6cm【详解】解:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,在矩形ABCD中,∠A=∠D=90°,∴∠ECD+∠DEC=90°,∴∠AEF=∠ECD.∵EF=EC∴Rt△AEF≌Rt△DCE.∴AE=CD.∵DE=1cm,∴AD=AE+1.∵矩形ABCD的周长为2cm,∴2(AE+AE+1)=2.解得,AE=6cm.22、(1)答案见解析;(2)【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23、(1)见解析;(2).【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可.
(2)利用勾股定理求出AC的长,CA所扫过的面积等于扇形CAA1的面积,然后列式进行计算即可.【详解】解:(1)△A1B1C为所求作的图形:(2)∵AC=,∠ACA1=90°,∴在旋转过程中,CA所扫过的面积为:.【点睛】本题考查的知识点是作图-旋转变换,扇形面积的计算,解题的关键是熟练的掌握作图-旋转变换,扇形面积的计算.24、(1)x=3或x=1;(2)x=5【分析】(1)利用因式分解法求解可得;(2)利用配方法求解可得.【详解】解:(1)∵x(x﹣3)=x﹣3,∴x(x﹣3)﹣(x﹣3)=0,则(x﹣3)(x﹣1)=0,∴x﹣3=0或x﹣1=0,解得x=3或x=1;(2)∵x2﹣10x+6=0,∴x2﹣10x=﹣6,则x2﹣10x+25=﹣6+25,即(x﹣5)2=19,∴x﹣5=±,则x=5.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.25、/r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西理工职业技术学院《幼儿园健康教育》2024-2025学年第一学期期末试卷
- 2025-2026学年柳州铁路第一中学化学高二第一学期期末联考模拟试题含解析
- 2024年大同辅警招聘考试题库有答案详解
- 2023年辽源辅警招聘考试题库含答案详解(突破训练)
- 2024年咸宁辅警招聘考试题库含答案详解(培优)
- 浙江横店影视职业学院《西方文化史》2024-2025学年第一学期期末试卷
- 山东省济南三中2026届物理高二第一学期期末检测模拟试题含解析
- 华中师范大学《电路与模拟电子技术实验》2024-2025学年第一学期期末试卷
- 安徽中医药高等专科学校《Python编程与应用》2024-2025学年第一学期期末试卷
- 湖北生物科技职业学院《编剧基础》2024-2025学年第一学期期末试卷
- DB32∕T 4577-2023 安宁疗护服务规范
- 听障儿童心理健康
- 美术培训卫生管理制度
- TWSJD62-2024移动式紫外线消毒器卫生要求
- 口腔种植手术室规划与布局
- 畜产品质量安全管理课件
- 大学计算机基础教程及实训指导课件第三部分计算机网络基础及应用
- 非日常费用管理制度
- 《遥远的救世主》名著导读好书
- DB62T 4341-2021 SMC改性沥青路面施工技术规程
- CJ/T 106-1999城市生活垃圾产量计算及预测方法
评论
0/150
提交评论