




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知方程的两根为,则的值是()A.1 B.2 C.-2 D.42.如图,在中,,,垂足为点,如果,,那么的长是()A.4 B.6 C. D.3.“2020年的6月21日是晴天”这个事件是()A.确定事件 B.不可能事件 C.必然事件 D.不确定事件4.如图,在第一象限内,,是双曲线()上的两点,过点作轴于点,连接交于点,则点的坐标为()A. B. C. D.5.已知甲、乙两地相距100(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间(t)与行驶速度v(km/h)的函数关系图象大致是().A. B. C. D.6.在一个不透明的布袋中有红色、黑色的球共10个,它们除颜色外其余完全相同.小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,则口袋中黑球的个数很可能是()A.4 B.5 C.6 D.77.圆锥形纸帽的底面直径是18cm,母线长为27cm,则它的侧面展开图的圆心角为()A.60° B.90° C.120° D.150°8.为了解我县目前九年级学生对中考体育的重视程度,从全县5千多名九年级的学生中抽取200名学生作为样本,对其进行中考体育项目的测试,200名学生的体育平均成绩为40分则我县目前九年级学生中考体育水平大概在()A.40分 B.200分 C.5000 D.以上都有可能9.如图,二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(3,0),对称轴为直线x=1,下列结论:①abc>0;②2a+b=0;③4a﹣2b+c>0;④当y>0时,﹣1<x<3;⑤b<c.其中正确的个数是()A.2 B.3 C.4 D.510.如图,反比例函数的图象经过点A(2,1),若≤1,则x的范围为()A.≥1 B.≥2 C.<0或≥2 D.<0或0<≤111.二次函数的图象如右图所示,若,,则()A., B., C., D.,12.一元二次方程有一根为零,则的值为()A. B. C.或 D.或二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以点A为圆心,AB长为半径作弧交AC于D,分别以B、D为圆心,以大于BD长为半径作弧,两弧交于点E,射线AE与BC于F,过点F作FG⊥AC于G,则FG的长为______.14.找出如下图形变化的规律,则第100个图形中黑色正方形的数量是_____.15.抛物线向左平移2个单位,再向上平移1个单位,得到的抛物线是______.16.关于x的一元二次方程kx2﹣x+2=0有两个不相等的实数根,那么k的取值范围是_____.17.如图,正方形的顶点分别在轴和轴上,边的中点在轴上,若反比例函数的图象恰好经过的中点,则的长为__________.18.如图,在平面直角坐标系中,直角三角形的直角顶点与原点O重合,顶点A,B恰好分别落在函数,的图象上,则tan∠ABO的值为___________三、解答题(共78分)19.(8分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.如图1,在中,是的完美分割线,且,则的度数是如图2,在中,为角平分线,,求证:为的完美分割线.如图2,中,是的完美分割线,且是以为底边的等腰三角形,求完美分割线的长.20.(8分)如图所示,双曲线与直线(为常数)交于,两点.(1)求双曲线的表达式;(2)根据图象观察,当时,求的取值范围;(3)求的面积.21.(8分)已知,如图,有一块含有30°的直角三角形的直角边的长恰与另一块等腰直角三角形的斜边的长相等.把该套三角板放置在平面直角坐标系中,且(1)若某开口向下的抛物线的顶点恰好为点,请写出一个满足条件的抛物线的解析式.(2)若把含30°的直角三角形绕点按顺时针方向旋转后,斜边恰好与轴重叠,点落在点,试求图中阴影部分的面积(结果保留)22.(10分)已知,如图,是的直径,平分交平点.过点的切线交的延长线于.求证:.23.(10分)如图,已知点在反比例函数的图像上.(1)求a的值;(2)如果直线y=x+b也经过点A,且与x轴交于点C,连接AO,求的面积.24.(10分)已知是⊙的直径,为等腰三角形,且为底边,请仅用无刻度的直尺完成下列作图.(1)在图①中,点在圆上,画出正方形;(2)在图②中,画菱形.25.(12分)如图,灯塔在港口的北偏东方向上,且与港口的距离为80海里,一艘船上午9时从港口出发向正东方向航行,上午11时到达处,看到灯塔在它的正北方向.试求这艘船航行的速度.(结果保留根号)26.如图,为了估算河的宽度,我们可以在河对岸选定一点,再在河的这一边选定点和点,使得,然后选定点,使,确定与的交点,若测得米,米,米,请你求出小河的宽度是多少米?
参考答案一、选择题(每题4分,共48分)1、A【分析】先化成一元二次方程的一般形式,根据根与系数的关系得出x1+x2,x1•x2,代入求出即可.【详解】∵2x2﹣3x=1,∴2x2﹣3x﹣1=0,由根与系数的关系得:x1+x2,x1•x2,所以x1+x1x2+x2()=1.故选:A.【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解答本题的关键.2、C【分析】证明△ADC∽△CDB,根据相似三角形的性质求出CD、BD,根据勾股定理求出BC.【详解】∵∠ACB=90°,
∴∠ACD+∠BCD=90°,
∵CD⊥AB,
∴∠A+∠ACD=90°,
∴∠A=∠BCD,又∠ADC=∠CDB,
∴△ADC∽△CDB,
∴,,
∴,即,
解得,CD=6,
∴,
解得,BD=4,
∴BC=,
故选:C.【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.3、D【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.【详解】“2020年的6月21日是晴天”这个事件是随机事件,属于不确定事件,故选:D.【点睛】本题主要考查了必然事件、不可能事件、随机事件的概念.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.4、D【分析】先根据P点坐标计算出反比例函数的解析式,进而求出M点的坐标,再根据M点的坐标求出OM的解析式,进而将代入求解即得.【详解】解:将代入得:∴∴反比例函数解析式为将代入得:∴∴设OM的解析式为:∴将代入得∴∴OM的解析式为:当时∴点的坐标为.故选:D.【点睛】本题考查待定系数法求解反比例函数和正比例函数解析式,解题关键是熟知求反比例函数和正比例函数解析式只需要一个点的坐标.5、C【分析】根据题意写出t与v的关系式判断即可.【详解】根据题意写出t与v的关系式为,故选C.【点睛】本题是对反比例函数解析式和图像的考查,准确写出解析式并判断其图像是解决本题的关键.6、C【分析】根据题意得出摸出黑球的频率,继而根据频数=总数×频率计算即可.【详解】∵小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,∴口袋中黑球的个数可能是10×60%=6个.故选:C.【点睛】本题主要考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.7、C【分析】根据圆锥侧面展开图的面积公式以及展开图是扇形,扇形半径等于圆锥母线长度,再利用扇形面积求出圆心角.【详解】解:根据圆锥侧面展开图的面公式为:πrl=π×9×27=243π,
∵展开图是扇形,扇形半径等于圆锥母线长度,∴扇形面积为:解得:n=1.
故选:C.【点睛】此题主要考查了圆锥侧面积公式的应用以及与展开图各部分对应情况,得出圆锥侧面展开图等于扇形面积是解决问题的关键.8、A【分析】平均数可以反映一组数据的一般情况、和平均水平,样本的平均数即可估算出总体的平均水平.【详解】∵200名学生的体育平均成绩为40分,∴我县目前九年级学生中考体育水平大概在40分,故选:A.【点睛】本题考查用样本平均数估计总体的平均数,平均数是描述数据集中位置的一个统计量,既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进行不同组数据的比较,以看出组与组之间的差别.9、B【分析】根据二次函数y=ax2+bx+c的图象与性质依次进行判断即可求解.【详解】解:∵抛物线开口向下,∴a<0;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线与x轴的一个交点坐标是(3,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点坐标是(﹣1,0),∴x=﹣2时,y<0,∴4a﹣2b+c<0,所以③错误;∵抛物线与x轴的2个交点坐标为(﹣1,0),(3,0),∴﹣1<x<3时,y>0,所以④正确;∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,所以⑤正确.故选B.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像性质特点.10、C【解析】解:由图像可得,当<0或≥2时,≤1.故选C.11、A【分析】由于当x=2.5时,,再根据对称轴得出b=-2a,即可得出5a+4c>0,因此可以判断M的符号;由于当x=1时,y=a+b+c>0,因此可以判断N的符号;【详解】解:∵当x=2.5时,y=,∴25a+10b+4c>0,,∴b=-2a,
∴25a-20a+4c>0,即5a+4c>0,
∴M>0,
∵当x=1时,y=a+b+c>0,
∴N>0,
故选:A.【点睛】此题主要考查了二次函数图象与系数的关系,解题的关键是注意数形结合思想的应用.12、B【分析】把代入一元二次方程,求出的值,然后结合一元二次方程的定义,即可得到答案.【详解】解:∵一元二次方程有一根为零,∴把代入一元二次方程,则,解得:,∵,∴,∴;故选:B.【点睛】本题考查了一元二次方程的解,以及一元二次方程的定义,解题的关键是熟练掌握解一元二次方程的方法,正确求出的值.二、填空题(每题4分,共24分)13、.【分析】过点F作FH⊥AB于点H,证四边形AGFH是正方形,设AG=x,表示出CG,再证△CFG∽△CBA,根据相似比求出x即可.【详解】如图过点F作FH⊥AB于点H,由作图知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四边形AGFH是正方形,设AG=x,则AH=FH=GF=x,∵tan∠C=,∴AC==,则CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴,即,解得x=,∴FG=,故答案为:.【点睛】本题是对几何知识的综合考查,熟练掌握三角函数及相似知识是解决本题的关键.14、150个【分析】根据图形的变化寻找规律即可求解.【详解】观察图形的变化可知:当n为偶数时,第n个图形中黑色正方形的数量为(n+)个;当n为奇数时,第n个图形中黑色正方形的数量为(n+)个.所以第100个图形中黑色正方形的数量是150个.故答案为150个.【点睛】本题难度系数较大,需要根据观察得出奇偶数是不同情况,找出规律.15、【分析】先得到抛物线的顶点坐标为(0,0),根据平移规律得到平移后抛物线的顶点坐标,则利用顶点式可得到平移后的抛物线的解析式为.【详解】抛物线的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移1个单位得到的点的坐标为(,1),
所以平移后的抛物线的解析式为.
故答案为:.【点睛】本题考查了二次函数图象的平移:由于抛物线平移后的形状不变,故a不变,再考虑平移后的顶点坐标,即可求出解析式.16、且k≠1【详解】解:∵关于x的一元二次方程有两个不相等的实数根,∴解得:﹣≤k<且k≠1故答案为﹣≤k<且k≠1.点睛:本题考查了根的判别式、一元二次方程的定义以及二次根式有意义的条件,根据一元二次方程的定义、二次根式下非负以及根的判别式列出关于k的一元一次不等式组是解题的关键.17、【分析】过点E作EG⊥x轴于G,设点E的坐标为(),根据正方形的性质和“一线三等角”证出△CEG≌△FCO,可得EG=CO=,CG=FO=OG-OC=,然后利用等角的余角相等,可得∠BAF=∠FCO,先求出tan∠BAF,即可求出tan∠FCO,即可求出x的值,从而求出OF和OC,根据勾股定理和正方形的性质即可求出CF、BF、AB、AF,从而求出OA.【详解】解:过点E作EG⊥x轴于G,如下图所示
∵反比例函数的图象过点,设点E的坐标为()∴OG=x,EG=∵四边形ABCD是正方形,∴AB=BC=CD,∠ABC=∠BCD=90°∵点E、F分别是CD、BC的中点∴EC=CD=BC=CF∵∠CEG+∠ECG=90°,∠FCO+∠ECG=90°,∴∠CEG=∠FCO在△CEG和△FCO中∴△CEG≌△FCO∴EG=CO=,CG=FO=OG-OC=∵∠BAF+∠AFB=90°,∠FCO+∠COF=90°,∠AFB=∠COF∴∠BAF=∠FCO在Rt△BAF中,tan∠BAF=∴tan∠FCO=tan∠BAF=在Rt△FCO中,tan∠FCO=解得:则OF==,OC=根据勾股定理可得:CF=∴BF=CF=,AB=BC=2CF=,根据勾股定理可得:AF=∴OA=OF+AF=故答案为:.【点睛】此题考查的是反比例函数、正方形的性质、全等三角形的判定及性质、锐角三角函数和勾股定理,掌握利用反比例函数解析式设图象上点坐标、作辅助线构造全等三角形和等角的锐角三角函数相等是解决此题的关键.18、【分析】根据反比例函数的几何意义可得直角三角形的面积;根据题意可得两个直角三角形相似,而相似比就是直角三角形∆AOB的两条直角边的比,从而得出答案.【详解】过点A、B分别作AD⊥x轴,BE⊥x轴,垂足为D、E,∵顶点A,B恰好分别落在函数,的图象上∴又∵∠AOB=90°∴∠AOD=∠OBE∴∴则tan∠ABO=故本题答案为:.【点睛】本题考查了反比例函数,相似三角形和三角函数的综合题型,连接辅助线是解题的关键.三、解答题(共78分)19、(1)88°;(2)详见解析;(3)【分析】(1)是的完美分割线,且,得∠ACD=44°,∠BCD=44°,进而即可求解;(2)由,得,由平分,,得为等腰三角形,结合,即可得到结论;(3)由是的完美分割线,得从而得,设,列出方程,求出x的值,再根据,即可得到答.【详解】(1)∵是的完美分割线,且,∴,∠A=∠ACD=44°,∴∠A=∠BCD=44°,∴.故答案是:88°;,,不是等腰三角形,平分,,,为等腰三角形.,,,是的完美分割线.∵是以为底边的等腰三角形,∴,∵是的完美分割线,∴,设,则,,,.【点睛】本题主要考查等腰三角形的性质与相似三角形的判定和性质定理,掌握相似三角形的性质定理,是解题的关键.20、(1);(2)或;(3)6.【分析】(1)把点A坐标代入反比例函数解析式即可求得k的值;(2)根据点B在双曲线上可求出a的值,再结合图象确定双曲线在直线上方的部分对应的x的值即可;(3)先利用待定系数法求出一次函数的解析式,再用如图的△AOC的面积减去△BOC的面积即可求出结果.【详解】解(1):双曲线经过,∴,∴双曲线的解析式为.(2)∵双曲线经过点,∴,解得,∴,根据图象观察,当时,的取值范围是或.(3)设直线的解析式为,∴,解得,∴直线的解析式为,∴直线与轴的交点,∴.【点睛】本题是反比例函数与一次函数的综合题,重点考查了待定系数法求函数的解析式、一次函数与反比例函数的交点问题和三角形的面积计算,属于中档题型,熟练掌握一次函数与反比例函数的基本知识是解题的关键.21、(1);(2)【分析】(1)在Rt△OBA中,由∠AOB=30°,AB=3利用特殊角的正切值即可求出OB的长度,从而得出点A的坐标,利用顶点式即可求出函数解析式;
(2)在Rt△OBA中,利用勾股定理即可求出OA的长度,在等腰直角三角形ODC中,根据OC的长度可求出OD的长,结合图形即可得出阴影部分的面积为扇形AOA′的面积减去三角形ODC的面积,结合扇形与三角形的面积公式即可得出结论.【详解】解:(1)在中,,∴∴∴.∴抛物线的解析式是(2)由(1)可知,由题意得∴在中,∴∴【点睛】本题考查了勾股定理、特殊角的三角函数值、扇形的面积以及等腰直角三角形的性质,解题的关键是:(1)求出点A的坐标;(2)利用分割图形求面积法求出阴影部分的面积.本题属于中档题,难度不大,解决该题型题目时,将不规则的图形的面积表示成多个规则图形的面积之和(差)的形式是关键.22、详见解析.【分析】连接,由切线的性质可知∠ODE=90°,证OD∥AE即可解决问题;【详解】连接.是的切线,,,,,平分,,,,,,.【点睛】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)2;(2)1【分析】(1)将A坐标代入反比例函数解析式中,即可求出a的值;(2)由(1)求出的a值,确定出/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 请你给青蛙一个吻课件
- 误吸的评估及处理
- 红酒杯知识培训方案模板课件
- 2025【合同范本】设备租赁合同
- 2025养殖场地租赁合同范本
- 2025合作合同协议范本
- 红色会说话课件
- 欧洲文化的演进史脉络概览教案
- 2025企业员工试用合同
- 诗经二首课件介绍
- 信息认证管理制度
- 电针参数优化研究-洞察及研究
- 色素痣诊疗专家共识(2025版)解读
- 中医体质辨识与调养课件
- DBJD25-68-2019甘肃省安装工程预算定额地区基价第十一册刷油、防腐蚀、绝热工程(不含税)
- 2025年金匮要略考试练习题库含答案
- 云南省昆明市寻甸县2024-2025学年八年级下学期期中考试数学试卷
- 转让民宿协议书范本
- 国企金融考试题及答案
- 2024-2025学年全国版图知识竞赛(中学组)考试题库(含答案)
- 新中国史学习教育课件
评论
0/150
提交评论