




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分式知识点及例题分式知识点及例题分式知识点及例题xxx公司分式知识点及例题文件编号:文件日期:修订次数:第1.0次更改批准审核制定方案设计,管理制度分式知识点一:分式的定义一般地,如果A,B表示两个整数,并且B中含有字母,那么式子叫做分式,A为分子,B为分母。知识点二:与分式有关的条件1、分式有意义:分母不为0()2、分式值为0:分子为0且分母不为0()3、分式无意义:分母为0()4、分式值为正或大于0:分子分母同号(或)5、分式值为负或小于0:分子分母异号(或)知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。字母表示:,,其中A、B、C是整式,C0。拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即注意:在应用分式的基本性质时,要注意C0这个限制条件和隐含条件B0。知识点四:分式的约分定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。步骤:把分式分子分母因式分解,然后约去分子与分母的公因。注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。知识点四:最简分式的定义一个分式的分子与分母没有公因式时,叫做最简分式。知识点五:分式的通分分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。分式的通分最主要的步骤是最简公分母的确定。最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。确定最简公分母的一般步骤:Ⅰ取各分母系数的最小公倍数;Ⅱ单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;Ⅲ相同字母(或含有字母的式子)的幂的因式取指数最大的。Ⅳ保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。注意:分式的分母为多项式时,一般应先因式分解。知识点六:分式的四则运算与分式的乘方1、分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:分式除以分式:式子表示为2、分式的乘方:把分子、分母分别乘方。式子分式的加减法则:同分母分式加减法:分母不变,把分子相加减。式子表示为异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为注意:加减后得出的结果一定要化成最简分式(或整式)。知识点七:整数指数幂★★★★()★★()★()(任何不等于零的数的零次幂都等于1)其中m,n均为整数。知识点八:分式方程的解的步骤=1\*GB2⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)=2\*GB2⑵解整式方程,得到整式方程的解。=3\*GB2⑶检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。分式方程应用题解题基本步骤1、审—仔细审题,找出等量关系。2、设—合理设未知数。3、列—根据等量关系列出方程(组)。4、解—解出方程(组)。注意检验(一)分式知识点总结题型一:考查分式的定义【例1】下列代数式中:,是分式的有: .题型二:考查分式有意义的条件【例2】当有何值时,下列分式有意义(1) (2) (3) (4) (5)题型三:考查分式的值为0的条件【例3】当取何值时,下列分式的值为0.(1) (2) (3)题型四:考查分式的值为正、负的条件【例4】(1)当为何值时,分式为正;当为何值时,分式为负;(3)当为何值时,分式为非负数.(二)分式的基本性质及有关题型1.分式的基本性质:2.分式的变号法则:题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1) (2)题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1) (2) (3)题型三:化简求值题【例1】已知:,求的值.【例2】若,求的值.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分.(1);(2);题型二:约分【例2】约分:(1);(3);(3).题型三:分式的混合运算【例3】计算:; (2);; (4);;(6);题型四:化简求值题【例4】先化简后求值(1)已知:,求分子的值;(2)已知:,求的值;题型五:求待定字母的值【例5】若,试求的值.(四)、整数指数幂与科学记数法题型一化简求值题【例2】已知,求(1)的值;(2)求的值.第二讲分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程;(2);(3);(4)题型二:增根【例4】若关于的分式方程有增根,求的值.题型三:列分式方程解应用题练习:1.解下列方程:(1); (2);; (4)(5) (6)2.如果解关于的方程会产生增根,求的值.3.已知关于的分式方程无解,试求的值.(二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 羊的饲养羊只行为习性研究考核试卷
- 搪瓷制品的防风与抗冲击性能考核试卷
- 临时教育咨询师合同
- 电机轴承选用与维护考核试卷
- 圣诞节小学生教学课件
- 涂料消费者偏好调研考核试卷
- 外币存款利率的市场预测与风险管理策略考核试卷
- 玻璃智能家居传感器考核试卷
- 笔的野外生存工具笔考核试卷
- 组织战略制定与实施策略考核试卷
- 啤酒采购合同协议书模板
- 中医把脉入门培训课件
- 高血糖症的急救与护理
- 成人失禁性皮炎的预防与护理
- 技术信息收集与分析方法考核试卷
- 小学2025年国防教育课程开发计划
- 义务教育数学课程标准(2024年版)
- 三年级下册面积单位换算练习100道及答案
- 工程安全质量问题罚款通知单
- 幼儿园其他形式的教育活动课件
- 住宅项目开盘前工作倒排表
评论
0/150
提交评论