版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华东师大版九年级下册精品课件本课件来源于网络只供免费交流使用华东师大版九年级下册本课件来源于网络只供免费交流使用126.1二次函数第26章二次函数导入新课讲授新课当堂练习课堂小结九年级数学下(HS)教学课件26.1二次函数第26章二次函数导入新课讲授新课当堂练2学习目标1.理解掌握二次函数的概念和一般形式.(重点)2.会利用二次函数的概念解决问题.3.会列二次函数表达式解决实际问题.(难点)学习目标1.理解掌握二次函数的概念和一般形式.(重点)3雨后天空的彩虹,公园里的喷泉,跳绳等都会形成一条曲线.这些曲线能否用函数关系式表示?导入新课情境引入雨后天空的彩虹,公园里的喷泉,跳绳等都会形成一条曲线41.什么叫函数?一般地,在一个变化的过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.3.一元二次方程的一般形式是什么?一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数.当b=0时,一次函数y=kx就叫做正比例函数.2.什么是一次函数?正比例函数?ax2+bx+c=0(a≠0)1.什么叫函数?一般地,在一个变化的过程中,如果有两个5问题1正方体六个面是全等的正方形,设正方体棱长为x,表面积为y,则y关于x的关系式为.y=6x2此式表示了正方体表面积y与正方体棱长x之间的关系,对于x的每一个值,y都有唯一的一个对应值,即y是x的函数.讲授新课二次函数的定义一探究归纳问题1正方体六个面是全等的正方形,设正方体棱长为x,表面6问题2用总长为20m的围栏材料,一面靠墙,围成一个矩形花圃.怎样围才能使花圃的面积最大?
如图,设围成的矩形花圃为ABCD,靠墙的一边为AD,垂直于墙面的两边分别为AB和CD.设AB长为xm(0<x<10),先取x的一些值,进而可以求出BC边的长,从而可得矩形的面积y.将计算结果写在下表的空格中:ADBCAB长(x)
123456789BC长12面积(y)48单位:m1816141086421832425048423218问题2用总长为20m的围栏材料,一面靠墙,围成一7我们发现,当AB的长(x)确定后,矩形的面积(y)也就随之确定,即y是x的函数,试写出这个函数的关系式.(0<x<10)即(0<x<10)我们发现,当AB的长(x)确定后,矩形的面积(y)也8问题3某商店将每件进价为8元的某种商品按每件10元出售,一天可售出100件.该店想通过降低售价,增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10元.将这种商品的售价降低多少时,能使销售利润最大?分析:销售利润=(售价-进价)×销售量.根据题意,求出这个函数关系式.想一想,为什么要限定?问题3某商店将每件进价为8元的某种商品按每件10元出售,一9问题1-3中函数关系式有什么共同点?函数都是用自变量的二次整式表示的y=6x2想一想(0<x<10)问题1-3中函数关系式有什么共同点?函数都是用y=6x210二次函数的定义:形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数叫做二次函数.温馨提示:(1)等号左边是变量y,右边是关于自变量x的整式;(2)a,b,c为常数,且a≠0;(3)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项.归纳总结二次函数的定义:形如y=ax²+bx+c(a,b,11例1下列函数中哪些是二次函数?为什么?(x是自变量)①y=ax2+bx+c②s=3-2t²③y=x2④⑤y=x²+x³+25⑥y=(x+3)²-x²不一定是,缺少a≠0的条件.不是,右边是分式.不是,x的最高次数是3.y=6x+9典例精析例1下列函数中哪些是二次函数?为什么?(x是自变量)不一12判断一个函数是不是二次函数,先看原函数和整理化简后的形式再作判断.除此之外,二次函数除有一般形式y=ax2+bx+c(a≠0)外,还有其特殊形式如y=ax2,y=ax2+bx,y=ax2+c等.方法归纳判断一个函数是不是二次函数,先看原函数和整理化13想一想:二次函数的一般式y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)有什么联系和区别?联系:(1)等式一边都是ax2+bx+c且a≠0;(2)方程ax2+bx+c=0可以看成是函数y=ax2+bx+c中y=0时得到的.区别:前者是函数.后者是方程.等式另一边前者是y,后者是0.想一想:二次函数的一般式y=ax2+bx+c(a≠0)与一14二次函数定义的应用二例2(1)m取什么值时,此函数是正比例函数?(2)m取什么值时,此函数是二次函数?解:(1)由题可知,解得(2)由题可知,解得m=3.第(2)问易忽略二次项系数a≠0这一限制条件,从而得出m=3或-3的错误答案,需要引起同学们的重视.注意二次函数定义的应用二例2解:(15
1.已知:,m取什么值时,y是x的二次函数?解:当=2且k+2≠0,即k=-2时,y是x的二次函数.变式训练解:由题意得:∴m≠±31.已知:16解:由题意得:
【解题小结】本题考查正比例函数和二次函数的概念,这类题需紧扣概念的特征进行解题.解:由题意得:【解题小结】本题考查正比例函数和二次函数的概17例3:某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;解:∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天产量减少5件,∴第x档次,提高了(x-1)档,利润增加了2(x-1)元.∴y=[6+2(x-1)][95-5(x-1)],即y=-10x2+180x+400(其中x是正整数,且1≤x≤10);例3:某工厂生产的某种产品按质量分为10个档次,第1档次(最18(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.解:由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.【方法总结】解决此类问题的关键是要吃透题意,确定变量,建立函数模型.(2)若生产第x档次的产品一天的总利润为1120元,求该产品19思考:1.已知二次函数y=-10x2+180x+400,自变量x的取值范围是什么?2.在例3中,所得出y关于x的函数关系式y=-10x2+180x+400,其自变量x的取值范围与1中相同吗?【总结】二次函数自变量的取值范围一般是全体实数,但是在实际问题中,自变量的取值范围应使实际问题有意义.思考:2.在例3中,所得出y关于x的函数关系式y=-10x220二次函数的值三例4一个二次函数.(1)求k的值.(2)当x=0.5时,y的值是多少?解:(1)由题意,得解得(2)当k=2时,.将x=0.5代入函数关系式中,.二次函数的值三例4一个二次函数21此类型题考查二次函数的概念,要抓住二次项系数不为0及自变量指数为2这两个关键条件,求出字母参数的值,得到函数解析式,再用代入法将x的值代入其中,求出y的值.归纳总结此类型题考查二次函数的概念,要抓住二次项系数不为0及22当堂练习2.函数y=(m-n)x2+mx+n是二次函数的条件是()A.m,n是常数,且m≠0B.m,n是常数,且n≠0C.m,n是常数,且m≠nD.m,n为任何实数C1.把y=(2-3x)(6+x)变成一般式,二次项为_____,一次项系数为______,常数项为.3.下列函数是二次函数的是()A.y=2x+1B.C.y=3x2+1D.C-3x2-1612当堂练习2.函数y=(m-n)x2+mx+n是二次函数234.已知函数y=3x2m-1-5①当m=__时,y是关于x的一次函数;②当m=__时,y是关于x的反比例函数;③当m=__时,y是关于x的二次函数.104.已知函数y=3x2m-1-510245.若函数是二次函数,求:(1)求a的值.(2)求函数关系式.(3)当x=-2时,y的值是多少?解:(1)由题意,得解得(2)当a=-1时,函数关系式为.(3)将x=-2代入函数关系式中,有5.若函数是二次函数,求256.(1)n个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n有什么关系?(2)假设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款是10(万元),那么请你写出两年后的本息和y(万元)的表达式(不考虑利息税).y=10(x+1)²=10x²+20x+10.6.(1)n个球队参加比赛,每两个队之间进行一场比赛,比赛267.矩形的周长为16cm,它的一边长为x(cm),面积为y(cm2).求(1)y与x之间的函数解析式及自变量x的取值范围;(2)当x=3时矩形的面积.解:(1)y=(8-x)x=-x2+8x(0<x<8);(2)当x=3时,y=-32+8×3=15cm2.7.矩形的周长为16cm,它的一边长为x(cm),面积为y(27课堂小结二次函数定义y=ax2+bx+c(a≠0,a,b,c是常数)一般形式右边是整式;自变量的指数是2;二次项系数a≠0.特殊形式y=ax2;y=ax2+bx;y=ax2+c(a≠0,a,b,c是常数).课堂小结二次函数定义y=ax2+bx+c(a≠0,a28学习的关键方法的选择课后作业学习的关键方法的选择课后作业29华东师大版九年级下册精品课件本课件来源于网络只供免费交流使用华东师大版九年级下册本课件来源于网络只供免费交流使用302.二次函数y=ax2+bx+c的图象与性质导入新课讲授新课当堂练习课堂小结九年级数学下(HS)教学课件第2课时二次函数y=a(x-h)2的图象与性质26.2二次函数的图象与性质2.二次函数y=ax2+bx+c的图象与性质导入新课讲授新课31情境引入学习目标1.会画二次函数y=a(x-h)2的图象.(重点)2.掌握二次函数y=a(x-h)2的性质.(难点)3.比较函数y=ax2与y=a(x-h)2的联系.情境引入学习目标1.会画二次函数y=a(x-h)2的图象.(32导入新课复习引入导入新课复习引入33a,c的符号a>0,c>0a>0,c<0a<0,c>0a<0,c<0图象开口方向对称轴顶点坐标函数的增减性最值向上向下y轴(直线x=0)y轴(直线x=0)(0,c)(0,c)当x<0时,y随x增大而减小;当x>0时,y随x增大而增大.当x<0时,y随x增大而增大;当x>0时,y随x增大而减小.x=0时,y最小值=cx=0时,y最大值=c问题1说说二次函数y=ax2+c(a≠0)的图象的特征.a,c的符号a>0,c>0a>0,c<0a<0,c>0a<034问题2二次函数y=ax2+c(a≠0)与y=ax2(a≠0)的图象有何关系?答:二次函数y=ax2+c(a≠0)的图象可以由y=ax2(a≠0)的图象平移得到:当c>0时,向上平移c个单位长度得到.
当c<0时,向下平移-c个单位长度得到.问题3函数的图象,能否也可以由函数平移得到?答:应该可以.问题2二次函数y=ax2+c(a≠0)与y=ax235讲授新课二次函数y=a(x-h)2的图象和性质一互动探究引例:在如图所示的坐标系中,画出二次函数与的图象.解:先列表:x···-3-2-10123···············讲授新课二次函数y=a(x-h)2的图象和性质一互动探究引例36xy-4-3-2-1o1234123456描点、连线,画出这两个函数的图象xy-4-3-2-1o1234123456描点、连线,画出这37抛物线开口方向对称轴顶点坐标向上向上y轴x=2(0,0)(2,0)根据所画图象,填写下表:想一想:通过上述例子,函数y=a(x-h)2的性质是什么?抛物线开口方向对称轴顶点坐标向上向上y轴x=2(0,0)(238试一试:画出二次函数的图象,并考虑它们的开口方向、对称轴和顶点.x···-3-2-10123···············-2-4.5-200-2-2-22-2-4-64-4-4.50xy-8试一试:画出二次函数39xyO-22-2-4-64-4抛物线开口方向对称轴顶点坐标向下直线x=-1(-1,0)直线x=0直线x=1向下向下(0,0)(1,0)xyO-22-2-4-64-4抛物线开口方向对称轴顶点坐标向40二次函数y=a(x-h)2(a≠0)的性质
y=a(x-h)2a>0a<0开口方向向上向下对称轴直线x=h直线x=h顶点坐标(h,0)(h,0)最值当x=h时,y最小值=0当x=h时,y最大值=0增减性当x<h时,y随x的增大而减小;x>h时,y随x的增大而增大.当x>h时,y随x的增大而减小;x<h时,y随x的增大而增大.知识要点二次函数y=a(x-h)2(a≠0)的性质y=a(x41若抛物线y=3(x+)2的图象上的三个点,A(-3,y1),B(-1,y2),C(0,y3),则y1,y2,y3的大小关系为________________.解析:∵抛物线y=3(x+)2的对称轴为x=-,a=3>0,∴x<-时,y随x的增大而减小;x>-时,y随x的增大而增大.∵点A的坐标为(-3,y1),∴点A在抛物线上的对称点A′的坐标为(,y1).∵-1<0<,∴y2<y3<y1.故答案为y2<y3<y1.练一练y2<y3<y1若抛物线y=3(x+)2的图象上的三个点,A(-342向右平移1个单位二次函数y=ax2与y=a(x-h)2的关系二想一想抛物线,与抛物线有什么关系?xyO-22-2-4-64-4向左平移1个单位向右平移二次函数y=ax2与y=a(x-h)2的关系二想一想43知识要点二次函数y=a(x-h)2的图象与y=ax2的图象的关系可以看作互相平移得到.左右平移规律:括号内左加右减;括号外不变.y=a(x-h)2当向左平移︱h︱时y=a(x+h)2当向右平移︱h︱时y=ax2知识要点二次函数y=a(x-h)2的图象与y=ax2的图象44例1.抛物线y=ax2向右平移3个单位后经过点(-1,4),求a的值和平移后的函数关系式.解:二次函数y=ax2的图象向右平移3个单位后的二次函数关系式可表示为y=a(x-3)2,把x=-1,y=4代入,得4=a(-1-3)2,,∴平移后二次函数关系式为y=(x-3)2.方法总结:根据抛物线左右平移的规律,向右平移3个单位后,a不变,括号内应“减去3”;若向左平移3个单位,括号内应“加上3”,即“左加右减”.例1.抛物线y=ax2向右平移3个单位后经过点(-1,4)45将二次函数y=-2x2的图象平移后,可得到二次函数y=-2(x+1)2的图象,平移的方法是(
)A.向上平移1个单位B.向下平移1个单位C.向左平移1个单位D.向右平移1个单位解析:抛物线y=-2x2的顶点坐标是(0,0),抛物线y=-2(x+1)2的顶点坐标是(-1,0).则由二次函数y=-2x2的图象向左平移1个单位即可得到二次函数y=-2(x+1)2的图象.故选C.练一练C将二次函数y=-2x2的图象平移后,可得到二次函数y=-2(461.把抛物线y=-x2沿着x轴方向平移3个单位长度,那么平移后抛物线的解析式是.2.二次函数y=2(x-)2图象的对称轴是直线____,顶点是________.3.若(-,y1)(-,y2)(,y3)为二次函数y=(x-2)2图象上的三点,则y1,y2,y3的大小关系为_______________.当堂练习y=-(x+3)2或y=-(x-3)2y1>y2>y31.把抛物线y=-x2沿着x轴方向平移3个单位长度,那么平移47
4.指出下列函数图象的开口方向,对称轴和顶点坐标.抛物线开口方向对称轴顶点坐标向上直线x=3(3,0)直线x=2直线x=1向下向上(2,0)(1,0)4.指出下列函数图象的开口方向,对称轴和顶点坐标.抛物线开485.在同一坐标系中,画出函数y=2x2与y=2(x-2)2的图象,分别指出两个图象之间的相互关系.解:图象如图.函数y=2(x-2)2的图象由函数y=2x2的图象向右平移2个单位得到.yOx
y=2x2
25.在同一坐标系中,画出函数y=2x2与y=2(x-2)2的49复习y=ax2+k探索y=a(x-h)2的图象及性质图象的画法图象的特征描点法平移法开口方向顶点坐标对称轴平移关系直线x=h(h,0)a>0,开口向上a<0,开口向下y=ax2课堂小结平移规律:括号内:左加右减;括号外不变.复习y=ax2+k探索y=a(x-h)2的图象及性质图象的50学习的关键方法的选择课后作业学习的关键方法的选择课后作业51华东师大版九年级下册精品课件本课件来源于网络只供免费交流使用华东师大版九年级下册本课件来源于网络只供免费交流使用5226.2二次函数的图象与性质导入新课讲授新课当堂练习课堂小结九年级数学下(HS)教学课件第5课时图形面积的最大值2.二次函数y=ax2+bx+c的图象与性质26.2二次函数的图象与性质导入新课讲授新课当堂练习课堂53学习目标1.分析实际问题中变量之间的二次函数关系.(难点)2.能应用二次函数的性质求出图形面积的最大值.(重点)学习目标1.分析实际问题中变量之间的二次函数关系.(难点)54导入新课复习引入
y=ax2+bx+ca>0a<0开口方向对称轴顶点坐标最值增减性向上向下当x位于对称轴左侧时,y随x的增大而减小;x位于对称轴右侧时,y随x的增大而增大.当x位于对称轴右侧时,y随x的增大而减小;x位于对称轴左侧时,y随x的增大而增大.直线直线导入新课复习引入y=ax2+bx+ca>0a<0开口方向对55做一做写出下列抛物线的开口方向、对称轴和顶点坐标,并写出其最值.(1)y=x2-4x-5;(配方法)(2)y=-x2-3x+4.(公式法)解:(1)开口方向:向上;对称轴:x=2;顶点坐标:(2,-9);最小值:-9;(2)开口方向:向下;对称轴:x=;顶点坐标:(,);最大值:.做一做写出下列抛物线的开口方向、对称轴和顶点坐56求二次函数的最大(或最小)值一讲授新课合作探究问题1二次函数的最值由什么决定?xyOxyO最小值最大值二次函数的最值由a及自变量的取值范围决定.求二次函数的最大(或最小)值一讲授新课合作探究问题1二次57问题2当自变量x为全体实数时,二次函数的最值是多少?当a>0时,有,此时.当a<0时,有,此时.问题3当自变量x有限制时,二次函数的最值如何确定?问题2当自变量x为全体实数时,二次函数58例1求下列函数的最大值与最小值x0y解:-31(1)当时,当时,典例精析例1求下列函数的最大值与最小值x0y解:-31(1)当59解:0xy1-3(2)即x在对称轴的右侧.当时,函数的值随着x的增大而减小.当时,解:0xy1-3(2)即x在对称轴的右侧.当时,60方法归纳当自变量的范围有限制时,二次函数的最值可以根据以下步骤来确定:1.配方,求二次函数的顶点坐标及对称轴.2.画出函数图象,标明对称轴,并在横坐标上标明x的取值范围.3.判断,判断x的取值范围与对称轴的位置关系.根据二次函数的性质,确定当x取何值时函数有最大或最小值.然后根据x的值,求出函数的最值.方法归纳当自变量的范围有限制时,二次函数61例2用长为6米的铝合金材料做一个形状如图所示的矩形窗框.窗框的高于宽各位多少时,它的透光面积最大?最大透光面积是多少?(铝合金型材宽度不计)x解:设矩形窗框的宽为xm,则高为m.这里应有x>0,故0<x<2.矩形窗框的透光面积y与x之间的函数关系式是:几何图形的最大面积二例2用长为6米的铝合金材料做一个形状如图所示的矩形窗框.62即配方得所以,当x=1时,函数取得最大值,最大值y=1.5.x=1满足0<x<2,这时因此,所做矩形窗框的宽为1m、高为1.5m时,它的透光面积最大,最大面积是1.5m2.即配方得所以,当x=1时,函数取得最大值,最大值y=1.5.63例1用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?问题1矩形面积公式是什么?典例精析问题2如何用l表示另一边?问题3面积S的函数关系式是什么?例1用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边64例1用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?解:根据题意得S=l(30-l),即S=-l2+30l(0<l<30).因此,当时,S有最大值也就是说,当l是15m时,场地的面积S最大.51015202530100200lsO例1用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边65变式1如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长32m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?xx60-2x问题2我们可以设面积为S,如何设自变量?问题3面积S的函数关系式是什么?问题4如何求解自变量x的取值范围?墙长32m对此题有什么作用?问题5如何求最值?最值在顶点处,即当x=15m时,S=450m2.问题1变式1与例1有什么不同?设垂直于墙的边长为x米,S=x(60-2x)=-2x2+60x.0<60-2x≤32,即14≤x<30.变式1如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜66变式2如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?xx60-2x问题1变式2与变式1有什么异同?问题2可否模仿变式1设未知数、列函数关系式?问题3可否试设与墙平行的一边为x米?则如何表示另一边?设矩形面积为Sm2,与墙平行的一边为x米,则变式2如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜67问题4当x=30时,S取最大值,此结论是否正确?问题5如何求自变量的取值范围?0<x≤18.问题6如何求最值?由于30>18,因此只能利用函数的增减性求其最值.当x=18时,S有最大值是378.不正确.问题4当x=30时,S取最大值,此结论是否正确?问题568实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围.通过变式1与变式2的对比,希望同学们能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.方法总结实际问题中求解二次函数最值问题,不一定都取图象顶点处69知识要点二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值,3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.知识要点二次函数解决几何面积最值问题的方法1.求出函数解析式701.如图1,用长8m的铝合金条制成如图的矩形窗框,那么最大的透光面积是.当堂练习2.如图2,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A开始沿AB向B以2cm/s的速度移动(不与点B重合),动点Q从点B开始BC以4cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.图1ABCPQ图231.如图1,用长8m的铝合金条制成如图的矩形窗框,那么最大的713.某广告公司设计一幅周长为12m的矩形广告牌,广告设计费用每平方米1000元,设矩形的一边长为x(m),面积为S(m2).(1)写出S与x之间的关系式,并写出自变量x的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.解:(1)设矩形一边长为x,则另一边长为(6-x),∴S=x(6-x)=-x2+6x,其中0<x<6.(2)S=-x2+6x=-(x-3)2+9;∴当x=3时,即矩形的一边长为3m时,矩形面积最大,为9m2.这时设计费最多,为9×1000=9000(元)3.某广告公司设计一幅周长为12m的矩形广告牌,广告设计费72课堂小结建立函数关系式常见几何图形的面积公式依据最值有时不在顶点处,则要利用函数的增减性来确定图形面积的最大值一个关键一个注意课堂小结建立函数关系式常见几何图形的面积公式依据最值有时73学习的关键方法的选择课后作业学习的关键方法的选择课后作业74华东师大版九年级下册精品课件本课件来源于网络只供免费交流使用华东师大版九年级下册本课件来源于网络只供免费交流使用752.二次函数y=ax2+bx+c的图象与性质导入新课讲授新课当堂练习课堂小结九年级数学下(HS)教学课件第3课时二次函数y=a(x-h)2+k的图象与性质26.2二次函数的图象与性质2.二次函数y=ax2+bx+c的图象与性质导入新课讲授新课76学习目标1.会用描点法画出y=a(x-h)2+k(a≠0)的图象.2.掌握二次函数y=a(x-h)2+k(a≠0)的图象的性质并会应用.(重点)3.理解二次函数y=a(x-h)2+k(a≠0)与y=ax2(a≠0)之间的联系.(难点)学习目标1.会用描点法画出y=a(x-h)2+k(a≠077导入新课复习引入1.说出下列函数图象的开口方向,对称轴,顶点,最值和增减变化情况:(1)y=ax2(2)y=ax2+c(3)y=a(x-h)2yyyyxxxxOOOOyyyyxxxxOOOOyyxxOO导入新课复习引入1.说出下列函数图象的开口方向,对称轴,顶点782.请说出二次函数y=-2x2的开口方向、顶点坐标、对称轴及最值?3.把y=-2x2的图像向上平移3个单位y=-2x2+3向左平移2个单位y=-2(x+2)24.请猜测一下,二次函数y=-2(x+2)2+3的图象是否可以由y=-2x2平移得到?你认为该如何平移呢?
2.请说出二次函数y=-2x2的开口方向、顶点坐标、3.把y79OXy3-2Oy3-2XOXy3-2Oy3-2X80讲授新课二次函数y=a(x-h)2+k的图象和性质一例1画出函数的图像.指出它的开口方向、顶点与对称轴.探究归纳讲授新课二次函数y=a(x-h)2+k的图象和性质一例1画81…………210-1-2-3-4x解:先列表再描点、连线-5.5-3-1.5-1-1.5-3-5.512345x-1-2-3-4-5-6-7-8-91yO-1-2-3-4-5-10直线x=-1开口方向向下;对称轴是直线x=-1;顶点坐标是(-1,-1)…………210-1-2-3-4x解:先列表再描点、连线-82试一试画出函数y=2(x+1)2-2图象,并说出抛物线的开口方向、对称轴、顶点.开口方向向下;对称轴是直线x=-1;顶点坐标是(-1,-2)-22xyO-2468-424试一试开口方向向下;-22xyO-2468-42483二次函数y=a(x-h)2+k(a≠0)的性质
y=a(x-h)2+ka>0a<0开口方向向上向下对称轴直线x=h直线x=h顶点坐标(h,k)(h,k)最值当x=h时,y最小值=k当x=h时,y最大值=k增减性当x<h时,y随x的增大而减小;x>h时,y随x的增大而增大.当x>h时,y随x的增大而减小;x<h时,y随x的增大而增大.知识要点二次函数y=a(x-h)2+k(a≠0)的性质y=a84顶点式顶点式85例1.已知二次函数y=a(x-1)2-c的图象如图所示,则一次函数y=ax+c的大致图象可能是(
)解析:根据二次函数开口向上则a>0,根据-c是二次函数顶点坐标的纵坐标,得出c>0,故一次函数y=ax+c的大致图象经过第一、二、三象限.故选A.典例精析A例1.已知二次函数y=a(x-1)2-c的图象如图所示,则一86例2.已知二次函数y=a(x-1)2-4的图象经过点(3,0).(1)求a的值;(2)若A(m,y1)、B(m+n,y2)(n>0)是该函数图象上的两点,当y1=y2时,求m、n之间的数量关系.解:(1)将(3,0)代入y=a(x-1)2-4,得0=4a-4,解得a=1;(2)方法一:根据题意,得y1=(m-1)2-4,y2=(m+n-1)2-4,∵y1=y2,∴(m-1)2-4=(m+n-1)2-4,即(m-1)2=(m+n-1)2.∵n>0,∴m-1=-(m+n-1),化简,得2m+n=2;例2.已知二次函数y=a(x-1)2-4的图象经过点(3,87方法二:∵函数y=(x-1)2-4的图象的对称轴是经过点(1,-4),且平行于y轴的直线,∴m+n-1=1-m,化简,得2m+n=2.方法总结:已知函数图象上的点,则这点的坐标必满足函数的表达式,代入即可求得函数解析式.方法二:方法总结:已知函数图象上的点,则这点的坐标必满足函数88例3要修建一个圆形喷水池,在池中心竖直安装一根水管.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?例3要修建一个圆形喷水池,在池中心竖直安装一根水管.在89C(3,0)B(1,3)AxOy123123解:如图建立直角坐标系,点(1,3)是图中这段抛物线的顶点.因此可设这段抛物线对应的函数是∵这段抛物线经过点(3,0),∴0=a(3-1)2+3.解得:因此抛物线的解析式为:y=a(x-1)2+3(0≤x≤3).当x=0时,y=2.25.答:水管长应为2.25m.34a=-y=(x-1)2+3(0≤x≤3)34-C(3,0)B(1,3)AxOy123123解:如图建90向左平移1个单位二次函数y=a(x-h)2+k与y=ax2的关系二12345x-1-2-3-4-5-6-7-8-91yO-1-2-3-4-5-10探究归纳怎样移动抛物线就可以得到抛物线?平移方法1向下平移1个单位向左平移二次函数y=a(x-h)2+k与y=ax2的关系二19112345x-1-2-3-4-5-6-7-8-91yO-1-2-3-4-5-10怎样移动抛物线就可以得到抛物线?平移方法2向左平移1个单位向下平移1个单位12345x-1-2-3-4-5-6-7-8-91yO-1-92二次函数y=ax2与y=a(x-h)2+k的关系可以看作互相平移得到的.y=ax2y=ax2+ky=a(x-h)2y=a(x-h)2+k上下平移左右平移上下平移左右平移平移规律简记为:上下平移,括号外上加下减;左右平移,括号内左加右减.二次项系数a不变.要点归纳二次函数y=ax2与y=a(x-h)2+k的关系可以看作互931.请回答抛物线y=4(x-3)2+7由抛物线y=4x2怎样平移得到?由抛物线向上平移7个单位再向右平移3个单位得到的.2.如果一条抛物线的形状与形状相同,且顶点坐标是(4,-2),试求这个函数关系式.练一练1.请回答抛物线y=4(x-3)2+7由抛物线y=4x294当堂练习二次函数开口方向对称轴顶点坐标y=2(x+3)2+5向上(1,-2)向下向下(3,7)(2,-6)向上直线x=-3直线x=1直线x=3直线x=2(-3,5)y=-3(x-1)2-2y=4(x-3)2+7y=-5(2-x)2-61.完成下列表格:当堂练习二次函数开口方向对称轴顶点坐标y=2(x+3)2+5952.把抛物线y=-3x2先向上平移2个单位,再向右平移1个单位,那么所得抛物线是___________________.4.抛物线y=-3(x-1)2+2的图象如何得到y=-3x2.3.抛物线y=-3x2+2的图象向右平移2个单位,再向上平移1个单位,得到抛物线的解析式为______________2.把抛物线y=-3x2先向上平移2个单位,再向右平移14.965.已知一个二次函数图象的顶点为A(-1,3),且它是由二次函数y=5x2平移得到,请直接写出该二次函数的解析式.y=a(x-h)2+k5.已知一个二次函数图象的顶点为A(-1,3),且它是由二次97课堂小结一般地,抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.二次函数y=a(x-h)2+k的图象和性质图象特点当a>0,开口向上;当a<0,开口向下.对称轴是x=h,顶点坐标是(h,k).平移规律左右平移:括号内左加右减;上下平移:括号外上加下减.课堂小结一般地,抛物线y=a(x-h)2+k与y=98学习的关键方法的选择课后作业学习的关键方法的选择课后作业99华东师大版九年级下册精品课件本课件来源于网络只供免费交流使用华东师大版九年级下册本课件来源于网络只供免费交流使用1002.二次函数y=ax2+bx+c的图象与性质导入新课讲授新课当堂练习课堂小结九年级数学下(HS)教学课件第4课时二次函数y=ax2+bx+c的图象与性质26.2二次函数的图象与性质2.二次函数y=ax2+bx+c的图象与性质导入新课讲授新课101情境引入学习目标1.会用配方法或公式法将一般式y=ax2+bx+c化成顶点式y=a(x-h)2+k.(难点)2.会熟练求出二次函数一般式y=ax2+bx+c的顶点坐标、对称轴.(重点)情境引入学习目标1.会用配方法或公式法将一般式y=ax2+b102导入新课复习引入y=a(x-h)2+ka>0a<0开口方向顶点坐标对称轴增减性极值向上向下(h,k)(h,k)x=hx=h当x<h时,y随着x的增大而减小;当x>h时,y随着x的增大而增大.当x<h时,y随着x的增大而增大;当x>h时,y随着x的增大而减小.x=h时,y最小=kx=h时,y最大=k抛物线y=a(x-h)2+k可以看作是由抛物线y=ax2经过平移得到的.导入新课复习引入y=a(x-h)2+ka>0a<0开口方向顶103顶点坐标对称轴最值y=-2x2y=-2x2-5y=-2(x+2)2y=-2(x+2)2-4y=(x-4)2+3y=-x2+2xy=3x2+x-6(0,0)y轴0(0,-5)y轴-5(-2,0)直线x=-20(-2,-4)直线x=-2-4(4,3)直线x=43??????顶点坐标对称轴最值y=-2x2y=-2x2-5y=-2(x+104讲授新课二次函数y=ax2+bx+c的图象和性质一探究归纳我们已经知道y=a(x-h)2+k的图象和性质,能否利用这些知识来讨论的图象和性质?问题1怎样将化成y=a(x-h)2+k的形式?讲授新课二次函数y=ax2+bx+c的图象和性质一探究归纳我105配方可得想一想:配方的方法及步骤是什么?配方可得106配方你知道是怎样配方的吗?
(1)“提”:提出二次项系数;(2)“配”:括号内配成完全平方;(3)“化”:化成顶点式.提示:配方后的表达式通常称为配方式或顶点式.配方你知道是怎样配方的吗?(1)“提”:提出二次项系数107问题2你能说出的对称轴及顶点坐标吗?答:对称轴是直线x=6,顶点坐标是(6,3).问题3二次函数可以看作是由怎样平移得到的?答:平移方法1:先向上平移3个单位,再向右平移6个单位得到的;平移方法2:先向右平移6个单位,再向上平移3个单位得到的.问题2你能说出的对称轴108问题4如何用描点法画二次函数的图象?…………9876543x解:先利用图形的对称性列表7.553.533.557.5510xy510然后描点画图,得到图象如右图.O问题4如何用描点法画二次函数109问题5结合二次函数的图象,说出其性质.510xy510x=6当x<6时,y随x的增大而减小;当x>6时,y随x的增大而增大.O问题5结合二次函数的图110例1画出函数的图象,并说明这个函数具有哪些性质.x···-2-101234···y······-6.5-4-2.5-2-2.5-4-6.5解:函数通过配方可得,先列表:典例精析例1画出函数1112xy-204-2-4-4-6-8然后描点、连线,得到图象如下图.由图象可知,这个函数具有如下性质:当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;当x=1时,函数取得最大值,最大值y=-2.2xy-204-2-4-4-6-8然后描点、连线,得到图象如112求二次函数y=2x2-8x+7图象的对称轴和顶点坐标.因此,二次函数y=2x2-8x+7图象的对称轴是直线x=2,顶点坐标为(2,-1).解:练一练求二次函数y=2x2-8x+7图象的对称轴和顶点坐标.113将一般式y=ax2+bx+c化成顶点式y=a(x-h)2+k二我们如何用配方法将一般式y=ax2+bx+c(a≠0)化成顶点式y=a(x-h)2+k?将一般式y=ax2+bx+c化成顶点式y=a(x-h)2+k114y=ax²+bx+cy=ax²+bx+c115归纳总结二次函数y=ax2+bx+c的图象和性质1.一般地,二次函数y=ax2+bx+c的可以通过配方化成y=a(x-h)2+k的形式,即因此,抛物线y=ax2+bx+c的顶点坐标是:对称轴是:直线归纳总结二次函数y=ax2+bx+c的图象和性质1.一般地,116归纳总结二次函数y=ax2+bx+c的图象和性质(1)(2)xyOxyO如果a>0,当x<时,y随x的增大而减小;当x>时,y随x的增大而增大.如果a<0,当x<时,y随x的增大而增大;当x>时,y随x的增大而减小.归纳总结二次函数y=ax2+bx+c的图象和性质(1)(2)117例2已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是( )
A.b≥-1 B.b≤-1C.b≥1 D.b≤1解析:∵二次项系数为-1<0,∴抛物线开口向下,在对称轴右侧,y的值随x值的增大而减小,由题设可知,当x>1时,y的值随x值的增大而减小,∴抛物线y=-x2+2bx+c的对称轴应在直线x=1的左侧而抛物线y=-x2+2bx+c的对称轴,即b≤1,故选择D.D例2已知二次函数y=-x2+2bx+c,当x>1时,y的值118填一填顶点坐标对称轴最值y=-x2+2xy=-2x2-1y=9x2+6x-5(1,3)x=1最大值1(0,-1)y轴最大值-1最小值-6(,-6)直线x=填一填顶点坐标对称轴最值y=-x2+2xy=-2x2-1y=119二次函数字母系数与图象的关系三合作探究问题1一次函数y=kx+b的图象如下图所示,请根据一次函数图象的性质填空:xyOy=k1x+b1xyOy=k2x+b2y=k3x+b3k1___0b1___0k2___0b2___0>><<k3___0b3___0<>二次函数字母系数与图象的关系三合作探究问题1一次函数y=120xyO问题2二次函数的图象如下图所示,请根据二次函数的性质填空:a1___0b1___0c1___0a2___0b2___0c2___0>>>><=开口向上,a>0对称轴在y轴左侧,x<0对称轴在y轴右侧,x>0x=0时,y=c.xyO问题2二次函数的图象如下121xyOa3___0b3___0c3___0a4___0b4___0c4___0<=><><开口向下,a<0对称轴是y轴,x=0对称轴在y轴右侧,x>0x=0时,y=c.xyOa3___0b3___0c3___0a4___122二次函数y=ax2+bx+c的图象与a、b、c的关系字母符号图象的特征a>0开口_____________________a<0开口_____________________b=0对称轴为_____轴a、b同号对称轴在y轴的____侧a、b异号对称轴在y轴的____侧c=0经过原点c>0与y轴交于_____半轴c<0与y轴交于_____半轴向上向下y左右正负知识要点二次函数y=ax2+bx+c的图象与a、b、c的关系字母符号123例3已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2.其中正确的个数是(
)A.1
B.2
C.3
D.4D由图象上横坐标为x=-2的点在第三象限可得4a-2b+c<0,故③正确;由图象上x=1的点在第四象限得a+b+c<0,由图象上x=-1的点在第二象限得出a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.【解析】由图象开口向下可得a<0,由对称轴在y轴左侧可得b<0,由图象与y轴交于正半轴可得c>0,则abc>0,故①正确;由对称轴x>-1可得2a-b<0,故②正确;例3已知二次函数y=ax2+bx+c的图象如图所示,下列124练一练二次函数的图象如图,反比例函数与正比例函数在同一坐标系内的大致图象是()解析:由二次函数的图象得知:a<0,b>0.故反比例函数的图象在二、四象限,正比例函数的图象经过一、三象限.即正确答案是C.C练一练二次函数的图象如图,反比例函1251.已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x-10123y51-1-11A.y轴B.直线x=C.直线x=2D.直线x=则该二次函数图象的对称轴为()D当堂练习1.已知二次函数y=ax2+bx+c的x、y的部分对应值如下126Oyx–1–232.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)a、b同号;(2)当x=–1和x=3时,函数值相等;(3)4a+b=0;(4)当y=–2时,x的值只能取0;其中正确的是.直线x=1(2)Oyx–1–232.已知二次函数y=ax2+bx+c(a≠01273.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a;④若(-3,y1),(,y2)是抛物线上两点,则y1>y2.其中正确的是()A.①②③B.①③④C.①②④D.②③④xyO2x=-1B3.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分1284.根据公式确定下列二次函数图象的对称轴和顶点坐标:直线x=3直线x=8直线x=1.25直线x=0.54.根据公式确定下列二次函数图象的对称轴和顶点坐标:直线x=129课堂小结顶点:对称轴:y=ax2+bx+c(a≠0)(一般式)配方法公式法(顶点式)课堂小结顶点:对称轴:y=ax2+bx+c(a≠0)配方法130学习的关键方法的选择课后作业学习的关键方法的选择课后作业131华东师大版九年级下册精品课件本课件来源于网络只供免费交流使用华东师大版九年级下册本课件来源于网络只供免费交流使用13226.2二次函数的图象与性质导入新课讲授新课当堂练习课堂小结九年级数学下(HS)教学课件第1课时二次函数y=ax2+k的图象与性质2.二次函数y=ax2+bx+c的图象与性质26.2二次函数的图象与性质导入新课讲授新课当堂练习课堂小133学习目标1.会画二次函数y=ax2+k的图象.(重点)2.掌握二次函数y=ax2+k的性质并会应用.(难点)3.理解y=ax²与y=ax²+k之间的联系.(重点)学习目标1.会画二次函数y=ax2+k的图象.(重点)134已知二次函数①y=-x2;②y=x2;③y=15x2;④y=-4x2;⑤y=-x2;⑥y=4x2.(1)其中开口向上的有(填题号);(2)其中开口向下,且开口最大的是(填题号);(3)当自变量由小到大变化时,函数值先逐渐变大,然后逐渐变小的有(填题号).②③⑥⑤①④⑤导入新课复习引入已知二次函数②③⑥⑤①④⑤导入新课复习引入135这个函数的图象是如何画出来的?情境引入xy这个函数的图象是如何画出来的?情境引入xy136讲授新课二次函数y=ax2+k的图象与性质一探究归纳解:先列表:x···-3-2-10123···············例1在同一直角坐标系中,画出二次函数与的图象.讲授新课二次函数y=ax2+k的图象与性质一探究归纳解:先列137xy-4-3-2-1o1234123456描点、连线,画出这两个函数的图象xy-4-3-2-1o1234123456描点、连线,画出这138观察与思考抛物线,的开口方向、对称轴和顶点各是什么?二次函数开口方向顶点坐标对称轴向上向上(0,0)(0,1)y轴y轴想一想:通过上述例子,函数y=ax2+k的性质是什么?观察与思考抛物线,的开口方139y-2-2422-4x0二次函数y=ax2+k的图象和性质(a<0)二做一做在同一坐标系内画出下列二次函数的图象:y-2-2422-4x0二次函数y=ax2+k的图象和性质(140根据图象回答下列问题:(1)图象的形状都是.(2)三条抛物线的开口方向_______;(3)对称轴都是__________(4)从上而下顶点坐标分别是_____________________(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________(6)函数的增减性都相同:_________________________________________________________抛物线向下直线x=0(0,0)(0,2)(0,-2)高大y=0y=-2y=2y-2-222-4x0对称轴左侧y随x增大而增大对称轴右侧y随x增大而减小根据图象回答下列问题:抛物线向下直线x=0(0,0)(0141二次函数y=ax2+k(a≠0)的性质y=ax2+ka>0a<0开口方向向上向下对称轴y轴y轴顶点坐标(0,k)(0,k)最值当x=0时,y最小值=k当x=0时,y最大值=k增减性当x<0时,y随x的增大而减小;x>0时,y随x的增大而增大.当x>0时,y随x的增大而减小;x<0时,y随x的增大而增大.知识要点二次函数y=ax2+k(a≠0)的性质y=ax2+ka>142例2:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.解析:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.c方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.例2:已知二次函数y=ax2+c,当x取x1,x2(x1≠x143二次函数y=ax2+c的图象及平移三探究归纳做一做:在同一直角坐标系中,画出二函数y=2x2+1与y=2x2-1的图象.解:先列表:x···-2-1.5-1011.52···y=2x2+1······y=2x2-1······95.53135.5973.51-113.57二次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025 小学六年级语文下册 童年生活 趣事分享课件
- 跨境电商独立站域名备案合同2025年执行版
- 口罩生产供应协议2025年标准模板
- 2025 小学六年级语文上册批注式阅读指导课件
- 2025年AI语音助手开发运营协议
- 淮阴县医院面试题及答案
- 深度解析(2026)《GBT 39356-2020肥料中总镍、总钴、总硒、总钒、总锑、总铊含量的测定 电感耦合等离子体发射光谱法》
- 深度解析(2026)《GBT 34637-2017无损检测 气泡泄漏检测方法》
- 深度解析(2026)《GBT 34370.6-2017游乐设施无损检测 第6部分:射线检测》
- 深度解析(2026)《GBT 34108-2017金属材料 高应变速率室温压缩试验方法 》
- 消化内镜人工智能年度进展2026
- 2025四川成都东方广益投资有限公司下属企业招聘9人备考题库(含答案详解)
- 《储能技术》课件-2.3 抽水蓄能电站厂房系统
- 学校师生安全教育、宣传、培训制度
- 上海国安面试备考指导常见面试问题与应对策略
- 嗜铬细胞瘤术前血糖控制目标方案
- 云南特色农产品市场需求调研报告
- 本科《行政领导学》期末纸质考试总题库2025版
- 高校人事制度培训
- 2025-2026学年第一学期三年级数学期末测试卷(北师大版2024)及答案
- 中国烟草法务面试法律文书审核
评论
0/150
提交评论