版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
QuantumMechanicsChapter4.TheRadialSchreodingerEquation§4.0TheRadialSchroedingerEquationEquation(6.36),thetime-independentSchreodingerequationinthreedimensionsmayberewrittentoeliminate(消除)theangulardependence,yielding
•Considerthespecialcasel=0first.Equation(8.1)canthenbewritten
Thisequationisidenticaltothetime-independentone-dimensionalSchreodingerequation[Eq.(3.5)],exceptthatthevariableisrratherthanxandtheeigenfunctionisrR(r)ratherthanu(x).Therefore,theeigenfunctionsarealsoidenticalwhenxisreplacedbyrandu(x)isreplacedbyrR(r).——————Ascomparison,Eq.(3.5)isasfollows:§4.1SolutionsforaFreeParticle
ForafreeparticlewecansetV(r)=0,andifl=0wehavewhosesolutionscanbeexpressedasThecompletesolution,includingtimedependence,isthereforeψ(r,θ,φ,t)=R(r)eiωt=Ne±i(kr-ωt)/r(8.5)whereNisanormalizingconstant;ψisindependentofθandφ,becausel=0.Theradialfunctionforl=0mayalsobewrittenintheformR(r)=(Acoskr+Bsinkr)/r(8.6)
BoundaryConditionattheOrigin
Equation(8.6)describesastandingwave(驻波)thatcannotexistattheorigin,becauseofthe1/rfactor.HoweverwecanmakethiswaveacceptablebysettingAequaltozero,because(sinkr)/risfiniteatr=0.Thus,althoughEq.(8.3)hasthesameformastheone-dimensionalSchreodingerequation,the
eigenfunctionsrR(r)thatreplaceu(x)inthatequationmustbezeroattheorigin,becausetheycontainthefactorr.•Thismakesthesolutionforasphericalwellsignificantlydifferentfromthesolutionforaone-dimensionalwell,evenwhentheangularmomentumiszero.•TheCentrifugalPotential(离心力势)
Evenifl≠0,wecanwriteEq.(8.1)inaformthatresemblesEq.(8.2)bydefininganeffectivepotentialVeffgivenby
wherethesecondtermiscalledthecentrifugalpotential.Thisisnotactuallypotentialenergy,butratherthekineticenergyassociatedwithangularmotion.Equation(8.l)cannowbewrittenThequantityE-Veffistheenergythatremainsafterwesubtractthepotentialenergyandtheenergyassociatedwithangularmotion.Thusthisexpressionistheenergyassociatedwithradialmotion,justasinonedimensiontheexpressionE-Visthekineticenergyassociatedwithmotionalongoneaxis.TheRadialProbabilityDensityTheparallelbetweenEq.(8.8)andtheone-dimensionalSchreodingerequation[Eq.(3.5)]canbestrengthenedbyconsideringprobabilitydensities.InChapter2wesawthatwherer2sinθdθdφdristhevolumeelementinsphericalcoordinates,andwealsosawthat
WecanuseEq.(6.54)toeliminatetheangularpartandobtainthenormalizationconditionfortheradialpart:•TheproductrR(r)istheprobabilityamplitude(几率幅)fortheradialcoordinate,justasu(x)istheprobabilityamplitudeforthexcoordinate.•ThatmeansthattheprobabilityP(r1,r2)offindingthercoordinateoftheparticletobeintheranger1<r<r2isgivenby
Equation(8.8)cannowbeexpressedinwordsasoperator×probabilityamplitude=kineticenergy×probabilityamplitude
wherethekineticenergyistobeunderstoodasthepartoftheenergythatresultsfromthecomponentofthevelocityalongtheraxis.Thisexpressionappliestomotionalongthex,y,orzaxisinrectangularcoordinates(直角坐标).
§4.2TheSphericalPotentialWell
Letuscomparethesphericalpotentialwellwiththeone-dimensionalsquarewelltreatedinSection3.2.A"square"sphericalwellcanbedescribedbyapotentialV(r)thathasasharpstep(Figure8.1):V(r)=-V0forr<aV(r)=0forr>a(8.11)Whenl=0,thesituationisverymuchlikethatoftheone-dimensionalwell.Forr<a,theradialSchreodingerequationisEq.(8.3)andthesolutionisgivenbyEq.(8.6)withA=0.Thatis,U(r,θ,φ)=B(sinkr)/r(8.12)where,asbefore,thekineticenergyisButinthiscasethekineticenergywithinthewellisequaltoE+V0.Forr>a,theradialequationis,fromEq.(8.2)andthesolutionforaboundstatemustgotozeroasr→∞.Thusforr>a,wehaveadecayingexponential(衰减的指数函数):HereαisrealwhenEisnegative,justasintheone-dimensionalwell.
FIGURE8.1Theeffectivepotentialwellthatappearsintheradialequationforthesquare-wellpotentialofEq.(8.11).Forr<atheeffectivepotentialissimplythecentrifugalpotential.Wenowapplythecontinuityconditionatr=atofindtheallowedvaluesofEaswedidbefore.Becausethemathematicalfunctionsareexactlythesame,theenergylevelsmustbethesameasbefore,withoneimportantexception:TheeigenfunctionrR(r)mustbezeroatr=0.Noneoftheeven(偶)functionsfromSection3.2meetsthisrequirement.Thusallofthesolutionsforthesphericalwellareodd(奇)functionsofr.———————Theoddwavefunctioninonedimensionalsquarewell:Thereforetheresultforl=0musthavethesameformastheresultfoundinSection3.2fortheodd-paritysolution;theconditionthatrR=0atr=0eliminatestheevensolution.TheenergylevelsarethusfoundfromEq.(3.39):Sinka=±ka/βa(β2=k2+α2andcotka<0) (3.39b)Becausecotka<0,thelowest-energysolutionhasπ/2<ka<π(likethelowestoddsolutionintheone-dimensionalcase).Butka≤βa.Therefore,ifβa<π/2(thatis,if2mV0a2/h2<(π/2)2),thereisnoboundstate.
Thereisoneboundstateifπ/2<βa<3π/2,therearetwoif3π/2<βa<5π/2.andsoon.TheallowedenergiesarefoundbythesamemethodfollowedinSection3.2.
Example:EnergyLeveloftheDeuteron(氘
核)Thedeuteron,thenucleusofthe2Hatom,isaboundstateofaneutronandaproton.Ithasonlyoneenergylevel,atanenergyof-2.2MeV.(Thismeansthatanenergyofatleast2.2MeVisrequiredtoseparatetheneutronfromtheprotoninthisnucleus.)ExperimentsshowthatthepotentialenergyV(r)canbeapproximatedbyEq.(8.11)withthevalueofaequalto2fm.FromthisinformationyoucanverifythatthewelldepthV0isabout37MeV.Inspiteofitsdepth,thisnarrowwellhasnoexcitedstate;thevalueofβaisnotmuchlargerthanπ/2.Curiously,thereisno"dineutron"(aboundstateoftwoneutronsintheabsenceofprotons),eventhoughthereisastrongattractiveforcebetweenneutrons.
ThePauliexclusionprinciple(tobediscussedinChapters10and11)providestheexplanationforthat.Inadineutron'sgroundstate,bothneutronswouldbeinthestateoflowestenergy.Theexclusionprincipledoesnotpermitthistohappenforneutrons(andmanyotherparticles).andnoexcitedstateisbound.Thusthereisnodineutron.SolutionsforNonzeroAngularMomentumWhenl>0,theradialequationforthesphericalsquarewellbecomesWiththesubstitutionsthesebecomeSolutionsofEq.(8.17)arecalledsphericalBesselfunctions[jl(kr)]andsphericalNeumannfunctions[nl(kr)].ForEq.(8.18)theargumentofthefunctionsisofcourseiαrratherthankr.Foreachvalueofltherearetwolinearlyindependentsolutions-asphericalBesselfunctionandasphericalNeumannfunction.Thefirstthreeofeachare
Wehaveseenthatj0(kr)andn0(kr),asjustgiven,aresolutionsoftheradialequation(8.17)whenl=0.YoumayverifyyourselfthattheotherfunctionsgivenabovearesolutionsofEq.(8.17)withthegivenvaluesofl.Figure8.2showsradialprobabilitydensities whereR(r)isthesphericalBesselfunction.forvariousvaluesofl.Noticehowis
"pushedaway"fromtheoriginwhenl>0.Inthatcaseismaximumnearkr=landisquitesmallforkr<l.AclassicalparticlewithmomentumPandangularmomentumLcannotbeclosertotheoriginthanr=L/p.Because
Usingthevalueswefindthatkr1.FIGURE8.2Radialprobabilitydensitiesforl=0.l=2.andl=5,CalculationofEnergyLevelsfortheSphericalWellTofindtheenergylevels,wenowmustapplythecontinuityconditionsatr=atothesolutionsforr<aandr>a.Forr<a,thesolutionmustbejl(kr),becauseitistheonlysolutionthatsatisfiestheconditionthatrR(r)mustbezeroatr=0.Forr>athereisnosuchcondition,andjl(kr)doesnotgotozeroasr→∞.ThereforeweneedtousetheNeumannfunctionnl.
Thegeneralsolutionisalinearcombinationofjlandnl,andthecombinationthathasthecorrectasymptotic(渐近)behaviorasr→∞iscalledasphericalHankelfunctionofthefirstkind,definedasTousethisfunctionasasolutionofEq.(8.18)weletxequaliαr.Then,forl=1andl=2,thesolutionsareThesefunctionsclearlyhavetherequiredbehaviorasr→∞,soweusethemfortheregionr>a.Thecompletesolutionforl=1isthereforewhereAandBareconstantstobedeterminedbytheboundaryconditionsatr=aandbynormalization.WemayeliminatebothAandBandsolvefortheenergylevel;weusetherequirementthattheratio(dR/dr)/Rbecontinuousatr=a,asfollows:Takingthederivativesandperformingthedivisiononeachsideleads(withsomerearrangementofterms)to
Thisequation,withthedefinitions
maybesolvednumericallytofindthepossiblevaluesofEforl=1.
ExampleProblem8.1UseEqs.(8.26)and(8.27)toshowthatthereisaboundstateforl=1onlyif•
Solution.Theright-handsideofEq.(8.26)isnevernegative,buttheleft-handsideisnegativewhencotka<l/ka,whichistruewhenka<π.Thuswemusthaveka≥πifEq.(8.26)istohaveasolution.Foraboundstateinthiswell,Emustbenegative;thereforefromEq.(8.27),withka≥π,wehaveNoticethattherequiredvalueofVa2forl=1isfourtimesthevaluerequiredforaboundstatewithl=0.Tohaveaboundstateforl=1requiresthat§4.3Example:TheSphericallySymmetricHarmonicOscillatorGiventhesphericallysymmetricharmonicoscillatorpotential[Eq.(6.16)]:V(r)=Kr2/2(8.28)WemaywritetheradialSchreodingerequation[Eq.(8.8)]asForl=0,Eq.(8.29)isidenticaltotheone-dimensionalequation,exceptthatu(x)isreplacedbyrR(r).Thereforethereisasolutionwhoseenergy
eigenvalueisequaltoasinonedimension.•However,wefoundpreviously(Section2.1)that,forthesphericallysymmetricharmonicoscillator,theenergylevelsaregivenbywherenisapositiveorzero.Howcantheseresultsbereconciled?Obviously,thefunctionthatgivesanenergyeigenvalueofmustnotbeanacceptablesolution.ThereasonisclearintheexpressionforrR(r):whereNisanormalizationfactor (8.30)•ThisfailstosatisfytherequiredboundaryconditionthatrR(r)mustbezeroforr=0.Ontheotherhand,thesolutionforenergylevelor(8.31)Thiseigenfunction,havingnoangulardependence,mustrepresentastatewithzeroangularmomentum.(WemightalsosaythatitsangulardependencecanbeexpressedasthesphericalharmonicY0,0,forwhichl=0andm=0.)ByapplyingtheraisingoperatortoR0(r),wecangeneratetheeigenfunctionSimilarly,wecangeneratetwoothereigenfunctionswiththesameeigenvalue:Foreachofthesefunctions,n=1andtheenergyisConnectionwiththeSphericalHarmonicsWehavealreadyseethat,inasphericallysymmetricpotential,eacheigenfunctionoftheSchreodingerequationistheproductofapurelyradialfunctionandapurelyangularfunctionandthattheangularfunctionmustbeasphericalharmonicoralinearsuperpositionofsphericalharmonics.
LetusshowthatthisistrueforthefunctionsofEqs.(8.32).Thefactorx[inEq.(8.32a)]maybewrittenintermsofthesumofthesphericalharmonicsY1,1andY1,-1,because[asshowninExampleProblem6.3]Y1,1-
Y1,-1=(3/2π)1/2x/rorx/r=(2π/3)1/2(Y1,1-Y1,-1)andthereforewhereNisanormalizationconstant.Thusu100isaneigenfunctionofL2withl=1,butitisamixtureofm=+1andm=-1withequalamplitudes.AmeasurementofLzwouldyield+ћand–ћwithequalprobability.FromEqs.(8.32)wecanalsodeducethatu100isalsoanequalmixtureofm=1andm=-1,whichcanbewrittenwhereasu001isaneigenfunctionofLzwithm=0:ItisoftenconvenienttousecombinationsofharmonicoscillatorfunctionswhicharelinearlyindependentandareeigenfunctionsofLz.Thesemaybewrittenwithasanormalizingfactor,asThesefunctionsaresimultaneouseigenfunctionsofenergy(n=1),ofL2(l=1),andofLz(withm=+1,0and–1,respectively).Itisinterestingthat,foranygivenvalueofn,asetofsimilarequationscanbewritten.Byapplicationoftheraisingoperator,youcanverifythattherearesixlinearlyindependentharmonic-oscillatorfunctionsforn=2,containingtherespectivefactorsx2,y2,z2,xy,xz,andyz.Wecanconstructsixindependentcombinationsofthesefactorsbycombiningthefivesphericalharmonicsforl=2withtheharmonicforl=0.Forexample,thecombinationu200+u020+u002containsx,y,andzonlyinthecombinationx2+y2=z2;thusitissphericallysymmetricandisproportionaltothesphericalharmonicY0,0withl=0.Similarly,forn=3,theraisingoperatorsyieldtendifferentfactorswithacombinedexponentof3:X3,y3,z3,x2y,xy2,x2z,xz2,y2z,yz2andxyz.Thesecanbewrittenaslinearcombinationsofthesevensphericalharmonicsforl=3plusthethreesphericalharmonicsforl=1.Theprocessisvalidforanyvalueofn.(SeeProblems5and6.)§4.4ScatteringofParticlesfromaSphericallySymmetricPotential
Letusnowconsiderthethree-dimensionalcounterpartofthetransmissionofparticlespastapotentialbarrier(Section5.3).Inthiscasethesituationisobviouslymorecomplicated,becausetheparticlescanemergeinanydirection(be"scattered")insteadofsimplybeingtransmittedorreflected.Supposethata"beam"ofparticles-aplanewaveoftheformΨin=Aei(kz-ωt)-encountersapotentialwell(a"scatteringcenter")wherethepotentialenergyisnonzerooveralimitedregion(r<a)surroundingthisscatteringcenter.(SeeFigure8.3.)Thedensityofparticlesinthebeamisandtheintensityofthebeam(thenumberofparticlescrossingaunitareainaunitoftime)istheproductofparticledensityandparticlevelocity,or asdiscussedinSection5.2.•Somefractionoftheparticleswillinteractwiththescatteringcentertoproduceawavethattravelsoutwardfromthecenterwithanamplitudethatingeneralisaproductoftwofunctions:(1)afunctionf(θ,φ)oftheangularcoordinatesθandφand(2)afunctionR(r)oftheradialcoordinaterFIGURE8.3Scatteringofaplanewavefromascatteringcenter,producingasphericalscatteredwave.Theinteractionthatproducesthescatteredwaveoccursonlyintheregionr<a.Thefunctionf(θ,φ)enablesustofindtheprobabilitythataparticlewillbescattered,asafunctionofthescatteringangle.Butbeforesolvingawaveequation,itmaybehelpfultoinvestigatethescatteringofclassicalparticles.ScatteringCrossSection,Classical
Considerthescatteringofclassicalparticlesfromasphere.Insteadofawave,wemighthaveastreamoftinypellets(小球)aimedtowardthesphere.Therearethreepossibilities;apelletcould1.Bedeflectedbythesphere2.Missthespherecompletely3.Gothroughthespherewithoutdeviation(ifthesphereisporous(多孔的))-ahighlyimprobableclassicalresult,butcommoninquantummechanics.Ifthebeamintensity(thenumberofpelletsperunitareapersecondinthebeam)isIandthesphereisnotporous,thenthenumberNscofpelletsthatarescatteredpersecondmustbeequaltoIσ,whereσisthesphere'scross-sectionalarea,or
Nsc=Iσorσ=Nsc/I (8.34)Andσ=πR2,whereRistheradiusofthesphere.Ingeneral,theratioNsc/Iiscalledthescatteringcrosssectionofthespherefortheseparticles,anditisdenotedbythesymbolσ.Butwhatifthesphereisporous?Inthatcase,σisnotdefinedasthegeometricalcrosssectionofthesphere;rather,itisdefinedastheratioNsc/I,usingEq.(8.34).DifferentialCrossSection,Classical
Weareofteninterestedinthenumberofparticlesthatarescatteredintoaspecificrangeofangles.Classically,allpelletsinaparallelbeamwillbescatteredatthesameangleθiftheyhavethesameimpactparameter(碰撞参数)b.Bydefinition,bisthedistancebywhichthepelletwouldmissthecenterofthesphereifitpassedthroughthesphereinastraightline.Ifthebeamisparalleltothezaxisandthecenterofthesphereisattheorigin,thenwecanrelatebtoRandthescatteringangleθ.FromFigure8.4weseethatb=Rsinθi,whereθiistheanglebetweenthevectorRandthezaxisinFigure8.4.Whenapelletstrikesasolidsphereandreboundselastically,wecanseefromFigure8.4thatthescatteringangleθ,whichistheanglebetweenthepellet'soriginaldirectionanditsfinaldirection,isgivenbyθ=π-2θi=π-2sin-l(b/R)(8.35)whereRisthesphere'sradius.FIGUIEE8.4Classicalelasticscatteringofapelletbyahardsphere.Eachpelletisdeflectedthroughanangleofθ=π-2θi.
Thenumberofpelletsthatscatterintoananglebetweenθandθ+dθisproportionaltothedifferentialcrosssectiondσ/dθ,whichisdependentontheangleθ:dσissimplythesizeoftheareathroughwhichapelletmustgoinordertobescatteredintoanangleinthisrange.Intermsoftheimpactparameterb,thisistheareaAofaringofradiusbandthicknessdb.WecanwriteAintermsofθanddθbysolvingEq.(8.35)forb,thendifferentiating,asfollows:b=Rsin[(π/2)-(θ/2)]=Rcos(θ/2)(8.36)db=-R/2sin(θ/2)dθ(8.37)
Thereforedσ=2πbdb=2πRcos(θ/2)(-R/2)sin(θ/2)dθ (8.38)whichcanbewrittendσ=-(πR2/2)sinθdθ(8.39)Nowthetotalcrosssectionσcanbefoundbyintegrationfromθ=πto0(becauseθ=πwhenb=0andθ=0whenb=R):asitshouldbe.ScatteringCrossSection,QuantumMechanical
Thescatteredwavecanbewrittenasψsc=Af(θ,ф)ei(kr-ωt)/r,awavetravelingoutwardfromtheorigininthedirectionofincreasingr(justasafunctionofkx-ωttravelsinthe+xdirection).•Thefactorl/rgivestheproper1/r2dependenceintheintensityofthewave,andthefactorAexpressesthefactthatthescatteredwaveamplitudeshouldbeproportionaltotheamplitudeoftheincidentwave[writtenbeforeasψin=Aei(kz-ωt)].•Wecanrelatef(θ,φ)tothescatteringcrosssectionasfollows.IfaperfectlyefficientparticledetectorwereplacedatpointP(see
Figure8.3),thenumberNdofparticlesobservedperunittimewouldbetheproductoftheintensityofthescatteredwaveandtheareadAofthedetector.Theintensityiswhereυistheparticlevelocity;thereforeButdA/r2isthesolidangledΩsubtendedbythedetectoratthescatteringcenter,istheintensityIincoftheincidentbeam,andEq.(8.41)gives
wheredΩ=sinθdθdφ.WecannowuseEq.(8.34)tointroducethescatteringcrosssection;byanalogtothatequation,
wemusthave
or
Noticethatdσ/dΩ,beingacrosssection,hasthedimensionsofanarea.Thereforef(θ,φ)musthavethedimensionsofalength.Weshallnowdemonstratethatitisproportionaltothewavelengthoftheincomingwave.
PartialWaveAnalysis
WemustnowrelatethescatteringphenomenontotheSchreodingerequationsolutionsthatwehaveseen.First,letusassumethatthescatteringpotentialissphericallysymmetric,whichimpliesthatthescat-
teredfunctionhassymmetrywithrespecttorotationaboutthezaxis.•Inthatcase,thereisnoφdependence,andf(θ,φ)becomessimplyf(θ).•Next,weapplytheconservationofangularmomentum;wedecomposetheincomingwaveintocomponentscalledpartialwaves,eachwithadifferentvalueofl.•Wecanthencalculatethescatteringofeachcomponentindependently.Inthelimitr→∞,thecompletewavefunctionapproachesψ→A(eikz+f(θ)eikr/r)(8.45)ThisistobecomparedwiththegeneralsolutionoftheSchreodingerequation,alinearcombinationofsphericalharmonics,eachmultipliedbytheappropriateradialfactorRl(r).Withnoφdependence,wehave
wherePl(cosθ)istheLegendrepolynomialoforderl.Inthisandthefollowingequations,thesummationrunsfroml=0toinfinity.
Ifthescatteringpotentialgoestozeroforr>a,thefunctionRlcanbewrittenasasuperpositionofjl(kr)andnl(kr)inthatregion:
Rl(r)=cosδljl(kr)-sinδlnl(kr)(r>a)(8.47)wherethecoefficientsarewrittenascosineandsinetopreservethenormalizationofthesolution(becausecos2δl+sin2δl=1regardlessofthevalueofδl).Atthispointweneedonlyfindthevaluesofthephaseanglesδl(calledphaseshifts)inordertodeterminef(θ)andhencethescatteringcrosssection.TodothiswematchEq.(8.45)tothelimitofEq.(8.46)forr→∞,eventuallyexpressingf(θ)intermsofaseriesofLegendrepolynomialwithcoefficientsthataredeterminedbythescatteringpotential.Itisknownthatthelimitsofthefunctionsjl(kr)andnl(kr)are,respectively,
Consequentlywemaywrite
Thustheonlyeffectofthescatteringcenteroneachcomponentoftheradialfunction(eachpartialwave)istoshiftitsphasebytheangleδl.Wenowcanfindanexpressionforthecrosssectionσintermsofthephaseshiftsδl.Weequatetheright-handsideof(8.45)tothelimit(asr→∞)oftheright-handsideof(8.46),using(8.50)toeliminateRlobtainingToeliminatezasavariable,wecanexpandeikzasaseriesofsphericalharmonics,aswecoulddoforanyfunctioninthreedimensions.(Thisisoftenausefulwaytoexpandaplanewave,expressingitasasumofcomponentwaves,eachwithadefiniteangularmomentum.SeeFigure8.5)Sinceeikzhasnoфdependence(zbeingequaltorcosθ).wewrite
andweevaluatethecoefficientsalinthesamewaythatwefindcoefficientsinaFourierseries,byusingthefactthatthePlareorthogonalandnormalized.TheresultisFIGURE8.5Analysisofaparticlebeamintodistinctannularbeams.Aparticlegoingthroughtheshadedareahasangularmomentumbetweenlћand(l+1)ћ.SubstitutionofthisexpressionintoEq.(8.51),andusingthelimitofjl(kr)asr→∞,yieldsor,writingthesinefunctionsinexponentialform[usingtheidentitysinx≡(eix
–e-ix)/2i],
Byequatingthecoefficientsofe-ikronthetwosideswefindthattheconstantcoefficientsblaregivenby
bl=(2l+1)ileiδ(8.56)Byequatingthecoefficientsofeikrwethenfindanexpressionforf(θ):ThetotalcrosssectionisthereforeYoucanverifyEq.(8.58)yourself.NoticethataftersquaringtheseriesofEq.(8.57),productsoftermsinvolvingdifferentvaluesofldonotappearintheintegral,becauseoftheorthogonalityoftheLegendrepolynomials.Thereforewecanexchangethesumandintegralsigns.ThentheintegralscanbeevaluatedbyuseofthenormalizationoftheLegendrepolynomials,withthefinalresultthat
Again.thesummationisoverallvaluesofl—allpositiveintegerspluszero.Theproblemnowbecomesthecalculationofthephaseshiftsδl—andthereareinfinitelymanyofthem!Fortunately,therearemanysituationsinwhichwecandeducethatonlythewaveswithl=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年智能车载蓝牙播放器项目营销方案
- 环境现场执法培训课件
- 上半年企业安全工作总结
- 医院危重孕产妇救治中心2026年度工作总结
- 年终工作总结汇报
- 土方开挖清运施工方案满足扬尘治理要求
- 2025年普通脚手架工考试题及答案
- 2025年重症医学科n2护士分层综合考核试卷及答案
- 求职酒吧营销员面试技巧
- 建设工程施工合同纠纷要素式起诉状模板无删减完整版
- 人工智能推动金融数据治理转型升级研究报告2026
- 2026长治日报社工作人员招聘劳务派遣人员5人备考题库含答案
- 期末教师大会上校长精彩讲话:师者当备三盆水(洗头洗手洗脚)
- 2026年潍坊职业学院单招综合素质笔试备考试题附答案详解
- 工兵基础知识课件
- 2026年贵州省交通综合运输事务中心和贵州省铁路民航事务中心公开选调备考题库及答案详解参考
- 2025四川雅安市名山区茗投产业集团有限公司招聘合同制员工10人参考题库附答案
- 人工智能应用与实践 课件 -第5章-智能体开发与应用
- 2025浙江绍兴越城黄酒小镇旅游开发有限公司编外人员第二次招聘总笔试历年典型考点题库附带答案详解2套试卷
- 聘用2025年3D建模合同协议
- 2025-2026学年西南大学版小学数学六年级(上册)期末测试卷附答案(3套)
评论
0/150
提交评论