版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知,大小关系正确的是A. B.C. D.2.逻辑斯蒂函数fx=11+eA.函数fx的图象关于点0,fB.函数fx的值域为(0,1C.不等式fx>D.存在实数a,使得关于x的方程fx3.函数,则A. B.4C. D.84.已知,,,则、、的大小关系为()A. B.C. D.5.函数的部分图象如图所示,将其向右平移个单位长度后得到的函数解析式为()A. B.C. D.6.,表示不超过的最大整数,十八世纪,函数被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则()A.0 B.1C.7 D.87.已知函数,且f(5a﹣2)>﹣f(a﹣2),则a的取值范围是()A.(0,+∞) B.(﹣∞,0)C. D.8.若关于的不等式的解集为,则函数在区间上的最小值为()A. B.C. D.9.边长为的正四面体的表面积是A. B.C. D.10.若函数恰有个零点,则的取值范围是()A. B.C. D.11.如图,PO是三棱锥P-ABC底面ABC的垂线,垂足为O①若PA⊥BC,PB⊥AC,则点O是△ABC的垂心;②若PA=PB=PC,则点O是△ABC的外心;③若∠PAB=∠PAC,∠PBA=∠PBC,则点O是△ABC的内心;④过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则点O是△ABC的重心以上推断正确的个数是()A.1 B.2C.3 D.412.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆(为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:①对于任意一个圆,其“优美函数”有无数个;②函数可以是某个圆的“优美函数”;③正弦函数可以同时是无数个圆的“优美函数”;④函数是“优美函数”的充要条件为函数的图象是中心对称图形A.①④ B.①③④C.②③ D.①③二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知在区间上单调递减,则实数的取值范围是____________.14.函数函数的定义域为________________15.若,,且,则的最小值为__________16.函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则的值是________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.(1)已知若,求x的取值范围.(结果用区间表示)(2)已知,求的值18.已知函数是定义在上的奇函数(1)求实数的值;(2)判断函数的单调性,并利用定义证明19.如图,在几何体中,,均与底面垂直,且为直角梯形,,,,,分别为线段,的中点,为线段上任意一点.(1)证明:平面.(2)若,证明:平面平面.20.求下列各式的值:(1);(2)21.在三棱锥中,平面平面,,,分别是棱,上的点(1)为的中点,求证:平面平面.(2)若,平面,求的值.22.已知函数(且)为奇函数.(1)求n的值;(2)若,判断函数在区间上的单调性并用定义证明;(3)在(2)的条件下证明:当时,.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】利用“”分段法比较出三者的大小关系.【详解】由于,,,即,故选C.【点睛】本小题主要考查指数式、对数式比较大小,属于基础题.2、D【解析】A选项,代入f-x,计算fx+f-x=1和f0=12,可得对称性;B选项,由【详解】解:对于A:fx=11+e-x=ex1+ex,f-x对于B:fx=11+e-x,易知e-x>0,所以1+e对于C:由fx=11+e-x容易判断,函数fx在R上单调递增,且f对于D:因为函数fx在R上单调递增,所以方程fx故选:D.3、D【解析】因为函数,所以,,故选D.【思路点睛】本题主要考查分段函数的解析式、指数与对数的运算,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.本题解答分两个层次:首先求出的值,进而得到的值.4、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.5、C【解析】由函数图象求出、、和的值,写出的解析式,再根据图象平移得出函数解析式【详解】由函数图象知,,,解得,所以,所以函数;因为,所以,;解得,;又,所以;所以;将函数的图象向右平移个单位长度后,得的图象,即故选:6、D【解析】根据函数的新定义求解即可.【详解】由题意可知4-(-4)=8.故选:D.7、D【解析】由定义可求函数的奇偶性,进而将所求不等式转化为f(5a﹣2)>f(﹣a+2),结合函数的单调性可得关于a的不等式,从而可求出a的取值范围.【详解】解:根据题意,函数,其定义域为R,又由f(﹣x)f(x),f(x)为奇函数,又,函数y=9x+1为增函数,则f(x)在R上单调递增;f(5a﹣2)>﹣f(a﹣2)⇒f(5a﹣2)>f(﹣a+2)⇒5a﹣2>﹣a+2,解可得,故选:D.【点睛】关键点睛:本题的关键是由奇偶性转化已知不等式,再求出函数单调性求出关于a的不等式.8、A【解析】由题意可知,关于的二次方程的两根分别为、,求出、的值,然后利用二次函数的基本性质可求得在区间上的最小值.【详解】由题意可知,关于的二次方程的两根分别为、,则,解得,则,故当时,函数取得最小值,即.故选:A.9、D【解析】∵边长为a的正四面体的表面为4个边长为a正三角形,∴表面积为:4×a=a2,故选D10、D【解析】由分段函数可知必须每段有且只有1个零点,写出零点建立不等式组即可求解.【详解】因为时至多有一个零点,单调函数至多一个零点,而函数恰有个零点,所以需满足有1个零点,有1个零点,所以,解得,故选:D11、C【解析】①由题意得出AO⊥BC,BO⊥BC,点O是△ABC的垂心;②若PA=PB=PC,则AO=BO=CO,点O是△ABC的外心;③由题意得出AO是∠BAC的平分线,BO是∠ABC的平分线,O是△ABC的内心;④若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心【详解】对于①,PO⊥底面ABC,∴PO⊥BC,又PA⊥BC,∴BC⊥平面PAO,∴AO⊥BC;同理PB⊥AC,得出BO⊥BC,∴点O是△ABC的垂心,①正确;对于②,若PA=PB=PC,由此推出Rt△PAO≌Rt△PBO≌Rt△PCO,∴AO=BO=CO,点O是△ABC的外心,②正确;对于③,若∠PAB=∠PAC,且PO⊥底面ABC,则AO是∠BAC的平分线,同理∠PBA=∠PBC时BO是∠ABC平分线,∴点O是△ABC的内心,③正确;对于④,过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心,④错误综上,正确的命题个数是3故选C【点睛】本题主要考查了空间中的直线与平面的垂直关系应用问题,是中档题12、D【解析】根据定义分析,优美函数具备的特征是,函数关于圆心(即坐标原点)呈中心对称.【详解】对①,中心对称图形有无数个,①正确对②,函数是偶函数,不关于原点成中心对称.②错误对③,正弦函数关于原点成中心对称图形,③正确.对④,充要条件应该是关于原点成中心对称图形,④错误故选D【点睛】仔细阅读新定义问题,理解定义中优美函数的含义,找到中心对称图形,即可判断各项正误.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据复合函数单调性的判断方法,结合对数函数的定义域,即可求得的取值范围.【详解】在区间上单调递减由对数部分为单调递减,且整个函数单调递减可知在上单调递增,且满足所以,解不等式组可得即满足条件的取值范围为故答案为:【点睛】本题考查了复合函数单调性的应用,二次函数的单调性,对数函数的性质,属于中档题.14、(1,3)【解析】函数函数的定义域,满足故答案为(1,3).15、##【解析】运用均值不等式中“1”的妙用即可求解.【详解】解:因为,,且,所以,当且仅当时等号成立,故答案为:.16、【解析】,把代入,得,,,故答案为考点:1、已知三角函数的图象求解析式;2、三角函数的周期性【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)或.【解析】(1)根据指数函数单调性求解即可;(2)由同角三角函数的基本关系求解,注意角所在的象限即可.【详解】(1)因为,所以,解得,即x的取值范围为.(2)因为,所以是第三象限角或第四象限角,当是第三象限角时,,当是第四象限角时,.18、(1);(2)为减函数;证明见解析【解析】(1)根据奇函数的定义,即可求出;(2)利用定义证明单调性【详解】解:(1),由得,解得另解:由,令得代入得:验证,当时,,满足题意(2)为减函数证明:由(1)知,在上任取两不相等的实数,,且,,由为上的增函数,,,,,则,函数为减函数【点睛】定义法证明函数单调性的步骤:(1)取值;(2)作差;(3)定号;(4)下结论19、(1)详见解析;(2)详见解析.【解析】(1)由题可得,进而可得平面,因为,,所以四边形为平行四边形,即,从而得出平面,平面平面,进而证得平面(2)由题可先证明四边形为正方形,连接,则,再证得平面,进而证得平面平面.【详解】证明:(1)因平面,平面,所以.因为平面,平面,所以平面.因为,,所以四边形为平行四边形,所以.因为平面,平面,所以平面.因为,所以平面平面,因为平面,所以平面.(2)因为,所以为等腰直角三角形,则.因为为的中点,且四边形为平行四边形,所以,故四边形为正方形.连接,则.因为平面,平面,所以.因为,平面,平面,所以平面.因为分别,的中点,所以,则平面.因为平面,所以平面平面.【点睛】本题主要考查证明线面平行问题以及面面垂直问题,属于一般题20、(1)-2;(2)18.【解析】(1)利用对数的运算性质化简求值即可.(2)由有理数指数幂与根式的关系及指数幂的运算性质化简求值.【小问1详解】原式【小问2详解】原式21、(1)证明见解析;(2)【解析】(1)根据等腰三角形的性质,证得,由面面垂直的性质定理,证得平面,进而证得平面平面.(2)根据线面平行的性质定理,证得,平行线分线段成比例,由此求得的值.【详解】(1),为的中点,所以.又因为平面平面,平面平面,且平面,所以平面,又平面,所以平面平面.(2)∵平面,面,面面∴,∴.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查线面平行的性质定理,考查空间想象能力和逻辑推理能力,属于中档题.22、(1);(2)在上单调递增,证明见解析;(3)证明见解析.【解析】(1)由奇函数的定义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年国新控股(重庆)有限公司相关岗位招聘备考题库附答案详解
- 中信证券股份有限公司沈阳市府大路证券营业部2026年校园招聘备考题库及参考答案详解1套
- 2026年佛山开放大学(佛山社区大学)公开招聘事业编制人员备考题库(第三批)及完整答案详解1套
- 华中科技大学同济医学院附属协和医院2026年临床科室医疗岗位招聘备考题库及1套参考答案详解
- 临泉县面向2026届公费师范毕业生招聘教师备考题库及答案详解一套
- 2026年巴州新华书店有限责任公司若羌县分公司招聘备考题库含答案详解
- 2026年临海市回浦实验中学代课教师招聘备考题库及答案详解(考点梳理)
- 2026年广州南沙人力资源发展有限公司招聘编外工作人员备考题库(含答案详解)
- 2026年西藏自治区财政厅引进急需紧缺人才15人备考题库完整参考答案详解
- 福建农林大学南平校区2025年高层次人才招聘备考题库及答案详解(夺冠系列)
- 化工设备新员工培训课件
- 防漏电安全工作培训课件
- 分包工程监理方案(3篇)
- 烧烫伤冻伤救护知识培训
- 2025年护理osce层级考核试题(含答案)
- 《语言学纲要》试题库(附答案)
- DB51∕T 2791-2021 川西高原公路隧道设计与施工技术规程
- 高效的仓储条码管理系统方案
- 行政单位预算管理课件
- 甄嬛传之非谓语的前世今生 高三英语
- 2025年企业人大代表述职报告模版(七)
评论
0/150
提交评论