版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.已知集合,,,则A. B.C. D.2.如图,在三棱锥中,,分别为AB,AD的中点,过EF的平面截三棱锥得到的截面为EFHG.则下列结论中不一定成立的是()A. B.C.平面 D.平面3.若-<α<0,则点P(tanα,cosα)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.对于函数,有以下几个命题①的图象关于点对称,②在区间递增③的图象关于直线对称,④最小正周期是则上述命题中真命题的个数是()A.0 B.1C.2 D.35.主视图为矩形的几何体是()A. B.C. D.6.若,,,,则,,的大小关系是A. B.C. D.7.函数是()A.偶函数,在是增函数B.奇函数,在是增函数C.偶函数,在是减函数D.奇函数,在是减函数8.如果直线l,m与平面满足和,那么必有()A.且 B.且C.且 D.且9.集合,则A∩B=()A.[0,2] B.(1,2]C.[1,2] D.(1,+∞)10.若是第二象限角,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限11.已知,,则A. B.C. D.,12.已知扇形的面积为9,半径为3,则扇形的圆心角(正角)的弧度数为()A.1 B.C.2 D.二、填空题(本大题共4小题,共20分)13.____________14.设函数,则____________15.设,若存在使得关于x的方程恰有六个解,则b的取值范围是______16.已知函数.(1)当函数取得最大值时,求自变量x的集合;(2)完成下表,并在平面直角坐标系内作出函数在的图象.x0y三、解答题(本大题共6小题,共70分)17.已知集合A为函数的定义域,集合B是不等式的解集(1)时,求;(2)若,求实数a的取值范围18.设函数.(1)计算;(2)求函数的零点;(3)根据第(1)问计算结果,写出的两条有关奇偶性和单调性的正确性质,并证明其中一个.19.已知函数(0<ω<6)的图象的一个对称中心为(1)求f(x)的最小正周期;(2)求函数f(x)的单调递增区间;(3)求f(x)在区间上的最大值和最小值20.已知,是方程的两根.(1)求实数的值;(2)求的值;(3)求的值.21.如图,在四棱锥中,底面是菱形,,且侧面平面,点是的中点(1)求证:(2)若,求证:平面平面22.已知函数是定义在1,1上的奇函数,且.(1)求m,n的值;(2)判断在1,1上的单调性,并用定义证明;(3)设,若对任意的,总存在,使得成立,求实数k的值.
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】本题选择D选项.2、D【解析】利用线面平行的判定和性质对选项进行排除得解.【详解】对于,,分别为,的中点,,EF与平面BCD平行过的平面截三棱锥得到的截面为,平面平面,,,故AB正确;对于,,平面,平面,平面,故正确;对于,的位置不确定,与平面有可能相交,故错误.故选:D.【点睛】熟练运用线面平行的判定和性质是解题的关键.3、B【解析】∵-<α<0,∴tanα<0,cosα>0,∴点P(tanα,cosα)位于第二象限,故选B考点:本题考查了三角函数值的符号点评:熟练掌握三角函数的定义及三角函数的值的求法是解决此类问题的关键,属基础题4、C【解析】先通过辅助角公式将函数化简,进而结合三角函数的图象和性质求得答案.【详解】由题意,,函数周期,④正确;,①错误;,③错误;由,②正确.故选:C.5、A【解析】根据几何体的特征,由主视图的定义,逐项判断,即可得出结果.【详解】A选项,圆柱的主视图为矩形,故A正确;B选项,圆锥的主视图为等腰三角形,故B错;C选项,棱锥的主视图为三角形,故C错;D选项,球的主视图为圆,故D错.故选:A.【点睛】本题主要考查简单几何体的正视图,属于基础题型.6、D【解析】分析:利用指数函数与对数函数及幂函数的行贿可得到,再构造函数,通过分析和的图象与性质,即可得到结论.详解:由题意在上单调递减,所以,在上单调递则,所以,在上单调递则,所以,令,则其为单调递增函数,显然在上一一对应,则,所以,在坐标系中结合和的图象与性质,量曲线分别相交于在和处,可见,在时,小于;在时,大于;在时,小于,所以,所以,即,综上可知,故选D.点睛:本题主要考查了指数式、对数式和幂式的比较大小问题,本题的难点在于的大小比较,通过构造指数函数与一次函数的图象与性质分析解决问题是解答的关键,着重考查了分析问题和解答问题的能力,试题有一定难度,属于中档试题.7、B【解析】利用奇偶性定义判断的奇偶性,根据解析式结合指数函数的单调性判断的单调性即可.【详解】由且定义域为R,故为奇函数,又是增函数,为减函数,∴为增函数故选:B.8、A【解析】根据题设线面关系,结合平面的基本性质判断线线、线面、面面的位置关系.【详解】由,则;由,则;由上条件,m与可能平行、相交,与有可能平行、相交.综上,A正确;B,C错误,m与有可能相交;D错误,与有可能相交故选:A9、B【解析】先求出集合A,B,再求两集合的交集即可【详解】解:由,得,所以,由于,所以,所以,所以,故选:B10、D【解析】先分析得到,即得点所在的象限.【详解】因为是第二象限角,所以,所以点在第四象限,故选D【点睛】本题主要考查三角函数的象限符合,意在考查学生对该知识的理解掌握水平,属于基础题.11、D【解析】∵,,∴,,∴.故选12、C【解析】利用扇形面积公式即可求解.【详解】设扇形的圆心角的弧度数为,由题意得,得.故选:C.二、填空题(本大题共4小题,共20分)13、【解析】,故答案为.考点:对数的运算.14、2【解析】利用分段函数由里及外逐步求解函数的值即可.【详解】解:由已知,所以,故答案为:.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力.15、【解析】作出f(x)的图像,当时,,当时,.令,则,则该关于t的方程有两个解、,设<,则,.令,则,据此求出a的范围,从而求出b的范围【详解】当时,,当时,,当时,,则f(x)图像如图所示:当时,,当时,令,则,∵关于x的方程恰有六个解,∴关于t的方程有两个解、,设<,则,,令,则,∴且,要存a满足条件,则,解得故答案为:16、(1)(2)答案见解析【解析】(1)由三角恒等变换求出解析式,再求得最大值时的x的集合,(2)由五点法作图,列出表格,并画图即可.【小问1详解】令,函数取得最大值,解得,所以此时x的集合为.【小问2详解】表格如下:x0y11作图如下,三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)由函数定义域求A,由不等式求B,按照集合交并补运算规则即可;(2)由A推出B的范围,由于a的不确定性,可以将不等式转换,用基本不等式解决.【小问1详解】由,解得:,即;当时,由得:或,∴,∴,∴;【小问2详解】由知:,即对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,即实数a的取值范围为;综上:,.18、(1),,,;(2)零点为;(3)答案见解析.【解析】(1)根据解析式直接计算即可;(2)由可解得结果;(3)由(1)易知为非奇非偶函数,用定义证明是上的减函数.【详解】(1),,,.(2)令得,故,即函数的零点为.(3)由(1)知,,且,故为非奇非偶函数;是上的减函数.证明如下:()任取,且,则,因为当时,,则,又,,所以,即,故函数是上的减函数.19、(1);(2)[],k∈Z;(3)最大值为10,最小值为【解析】(1)先降幂化简原式,再利用对称中心求得ω,进而得周期;(2)利用正弦函数的单调区间列出不等式即可得解;(3)利用(2)的结论,确定所给区间的单调性,再得最值【详解】解:(1)=4sin(sincos-cossin)-1=2sin2-1-2sincos=-cosωx-sinωx=-2sin(ωx),∵是对称中心,∴-,得ω=2-12k,k∈Z,∵0<ω<6,∴k=0,ω=2,∴,其最小正周期为π;(2)由,得,∴f(x)的单调递增区间为:[],k∈Z,(3)由(2)可知,f(x)在[]递减,在[]递增,可知当x=时得最大值为0;当x=时得最小值故f(x)在区间[]上的最大值为0,最小值为【点睛】此题考查了三角函数式的恒等变换,周期性,单调性,最值等,属于中档题20、(1);(2);(3)【解析】(1)根据方程的根与系数关系可求,,然后结合同角平方关系可求,(2)结合(1)可求,,结合同角基本关系即可求,(3)利用将式子化为齐次式,再利用同角三角函数的基本关系,将弦化切,代入可求【详解】解:(1)由题意可知,,,∴,∴,∴,(2)方程的两根分别为,,∵,∴,∴,,则,(3)【点睛】本题主要考查了同角三角函数关系式和万能公式的应用,属于基本知识的考查21、(1)见解析;(2)见解析【解析】分析:(1)可根据为等腰三角形得到,再根据平面平面可以得到平面,故.(2)因及是中点,从而有,再根据平面得到,从而平面,故平面平面.详解:(1)证明:因为,点是棱的中点,所以,平面.因为平面平面,平面平面,平面,所以平面,又因为平面,所以.(2)证明:因为,点是的中点,所以.由(1)可得,又因为,所以平面,又因为平面,所以平面平面点睛:线线垂直的证明,可归结为线面垂直,也可以转化到平面中的某两条直线的垂直问题,而面面垂直的证明,可转化为线面垂直问题,也转化为证明二面角为直二面角.22、(1),(2)在上递增,证明见解析(3)【解析】(1)由为1,1上奇
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗数据安全应急响应机制中的国际经验借鉴研究
- 医疗数据安全共享的区块链激励成本控制
- 2026届四川省仁寿县文宫中学生物高一第一学期期末调研试题含解析
- 2026届广西梧州市贺州市数学高三上期末统考模拟试题含解析
- 2026届四川省苍溪中学生物高二上期末检测试题含解析
- 危重病人出院康复指导
- 医疗数据伦理使用边界条款
- 2026届广东深圳龙文教育生物高三第一学期期末联考试题含解析
- 医疗收费满意度数据驱动的医院服务改进策略
- ICU设备操作指南
- 【《四川省鹤林中学学生宿舍楼施工组织设计》12000字】
- 西安市2024陕西西安市专职消防员管理中心招聘事业编制人员笔试历年参考题库典型考点附带答案详解(3卷合一)
- 吉安市农业农村发展集团有限公司及下属子公司2025年第二批面向社会公开招聘备考题库有答案详解
- 文冠果整形修剪课件
- 2026年益阳医学高等专科学校单招职业技能测试题库附答案
- 国家开放大学《商务英语4》期末考试精准题库
- 2025秋季《中华民族共同体概论》期末综合考试-国开(XJ)-参考资料
- 机械通气患者误吸预防及管理规范
- 浙江省宁波市海曙区2023-2024学年一年级上学期数学期末试卷(含答案)
- 2025年应急环境监测车行业分析报告及未来发展趋势预测
- 应急管理概论真题及答案
评论
0/150
提交评论