




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知函数,,若存在实数,使得,则的取值范围是()A. B.C. D.2.“”是“且”的()A.必要而不充分条件 B.充分而不必要条件C.充要条件 D.既不充分也不必要条件3.已知方程的两根为与,则()A.1 B.2C.4 D.64.已知直线,与平行,则的值是()A0或1 B.1或C.0或 D.5.若函数是定义在上的偶函数,在上单调递减,且,则使得的的取值范围是()A. B.C. D.6.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R).则“f(x)是偶函数“是“A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.已知集合,,,则()A. B.C. D.8.若a<b<0,则下列不等式中成立的是()A.-a<-bC.a>-b D.9.下列命题中正确的是A. B.C. D.10.函数的定义域是()A. B.C.R D.11.若集合,集合,则()A.{5,8} B.{4,5,6,8}C.{3,5,7,8} D.{3,4,5,6,7,8}12.设集合,,则集合A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知,则的最小值为_______________.14.已知函数(,)的部分图象如图所示,则的值为15.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________.16.已知平面向量,,,,,则的值是______三、解答题(本大题共6小题,共70分)17.设函数,.(1)若方程在区间上有解,求a的取值范围.(2)设,若对任意的,都有,求a的取值范围.18.如图,在棱长为2的正方体中,E,F分别是棱的中点.(1)证明:平面;(2)求三棱锥的体积.19.已知函数,其中.(1)若是周期为的偶函数,求及的值.(2)若在上是增函数,求的最大值.(3)当时,将函数的图象向右平移个单位,再向上平移1个单位,得到函数的图象,若在上至少含有10个零点,求b的最小值.20.在年初的时候,国家政府工作报告明确提出,年要坚决打好蓝天保卫战,加快解决燃煤污染问题,全面实施散煤综合治理.实施煤改电工程后,某县城的近六个月的月用煤量逐渐减少,月至月的用煤量如下表所示:月份用煤量(千吨)(1)由于某些原因,中一个数据丢失,但根据至月份数据得出样本平均值是,求出丢失的数据;(2)请根据至月份的数据,求出关于的线性回归方程;(3)现在用(2)中得到的线性回归方程中得到的估计数据与月月的实际数据的误差来判断该地区的改造项目是否达到预期,若误差均不超过,则认为该地区的改造已经达到预期,否则认为改造未达预期,请判断该地区的煤改电项目是否达预期?(参考公式:线性回归方程,其中)21.在平面直角坐标系中,已知角的顶点为坐标原点,始边为轴的正半轴,终边过点(1)求的值;(2)求的值22.已知函数.(1)若,求的解集;(2)若为锐角,且,求的值.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】根据给定条件求出函数的值域,由在此值域内解不等式即可作答.【详解】因函数的值域是,于是得函数的值域是,因存在实数,使得,则,因此,,解得,所以的取值范围是.故选:B2、A【解析】根据充分条件和必要条件的定义结合不等式的性质分析判断【详解】当时,满足,而不成立,当且时,,所以,所以“”是“且”的必要而不充分条件,故选:A3、D【解析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解【详解】显然方程有两个实数解,由题意,,所以故选:D4、C【解析】由题意得:或,故选C.考点:直线平行的充要条件5、C【解析】先求解出时的解集,再根据偶函数图像关于轴对称,写出时的解集,即得整个函数的解集.【详解】由于函数是偶函数,所以,由题意,当时,,则;又因为函数是偶函数,图象关于轴对称,所以当时,,则,所以的解集为.故选:C.6、B【解析】利用必要不充分条件的概念,结合三角函数知识可得答案.【详解】若φ=π2,则f(x)=Asin(ωx+π若f(x)=Asin(ωx+φ)为偶函数,则φ=kπ+π2,k∈Z,所以“f(x)是偶函数“是“φ=π故选:B【点睛】关键点点睛:掌握必要不充分条件的概念是解题关键.7、C【解析】解一元二次不等式求出集合,解不等式求出集合,再进行交集运算即可求解.【详解】因为,,所以,故选:C.8、C【解析】根据函数y=x的单调性,即可判断选项A是否正确;根据函数y=1x在-∞,0上单调递减,即可判断选项B是否正确;在根据不等式的性质即可判断选项【详解】因为a<b<0,所以-a>-b>0,又函数y=x在0,+∞上单调递增,所以因为a<b<0,函数y=1x在-∞,0上单调递减,所以因为a<b<0,所以-a>-b>0,又a=-a,所以a>-b,故因为a<b<0,两边同时除以b,可知ab>1,故D故选:C.9、D【解析】本题考查向量基本运算对于A,,故A不正确;对于B,由于向量的加减运算的结果仍为向量,所以,故B错误;由于向量的数量积结果是一个实数,故C错误,C的结果应等于0;D正确10、A【解析】显然这个问题需要求交集.【详解】对于:,;对于:,;故答案为:A.11、D【解析】根据并集的概念和运算即可得出结果.【详解】由,得.故选:D12、D【解析】并集由两个集合所有元素组成,排除重复的元素,故选.二、填空题(本大题共4小题,共20分)13、##225【解析】利用基本不等式中“1”的妙用即可求解.【详解】解:因为,所以,当且仅当,即时等号成立,所以的最小值为.故答案为:.14、【解析】先计算周期,则,函数,又图象过点,则,∴由于,则.考点:依据图象求函数的解析式;15、2【解析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值;【详解】设扇形的弧长为,半径为,则,,当时,扇形面积最大时,此时,故答案为:16、【解析】根据向量垂直向量数量积等于,解得α·β=,再利用向量模的求法,将式子平方即可求解.【详解】由得,所以,所以所以.故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2).【解析】(1),有解,即在上有解,设,对称轴为,只需,解不等式,即可得出结论;(2)根据题意只需,分类讨论去绝对值求出,利用函数单调性求出或取值范围,转化为求关于的不等式,即可求解.【详解】(1)在区间上有解,整理得在区间上有解,设,对称轴为,,解得,所以a的取值范围.是;(2)当,;当,,,设是减函数,且在恒成立,在上是减函数,在处有意义,,对任意的,都有,即,解得,的取值范围是.【点睛】本题考查方程零点的分布求参数范围,考查对数函数的图像和性质的综合应用,要注意对数函数的定义域,函数恒成立问题,属于较难题.18、(1)证明见解析(2)【解析】(1)连接,设,连接EF,EO,利用中位线和正方体的性质证明四边形是平行四边形,进而可证平面;(2)由平面可得点F,到平面的距离相等,则,进而求得三棱锥的体积即可【详解】(1)证明:连接,设,连接EF,EO,因为E,F分别是棱的中点,所以,,因为正方体,所以,,所以,,所以四边形是平行四边形,所以,又平面,平面,所以平面(2)由(1)可得点F,到平面的距离相等,所以,又三棱锥的高为棱长,即,,所以.所以【点睛】本题考查线面平行的证明,考查三棱锥的体积,考查转化思想19、(1),,;(2);(3).【解析】(1)由题知,,进而求解即可得答案;(2)由题知函数在上是增函数,故,进而解不等式即可得答案.(3)由题知,进而根据题意得方程在上至少含有10个零点,进而得,再解不等式即可得答案.【详解】解:(1)由题知,因为是周期为的偶函数,所以,,解得:,,所以,.(2)因为,所以,因为函数在上是增函数,所以函数在上是增函数,所以,解得,又因为,故.所以的最大值为.(3)当时,,所以,当时,,又因为函数在上至少含有10个零点,所以方程在上至少含有10个零点,所以,解得故b最小值为.【点睛】本题考查三角函数图像平移变换,正弦型函数的性质,考查运算求解能力,化归转化思想,是中档题.本题解题的关键件在于利用整体换元的思想,将为题转化为利用函数的图像性质求解.20、(1)4(2)(3)该地区的煤改电项目已经达到预期【解析】(1)根据平均数计算公式得,解得丢失数据;(2)根据公式求,再根据求;(3)根据线性回归方程求估计数据,并与实际数据比较误差,确定结论.试题解析:解:(1)设丢失的数据为,则得,即丢失的数据是.(2)由数据求得,由公式求得所以关于的线性回归方程为(3)当时,,同样,当时,,所以,该地区的煤改电项目已经达到预期21、(1)(2)当时,;当时,【解析】(1)根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年充换电站合作协议书
- 2025家具租赁合同书
- 2025公交车站广告牌租赁合同
- 《桥梁工程》课件
- 《电源管理培训》课件
- 2025房地产买卖合同协议书范文
- 2025关于建筑工程项目的施工合同
- 2025陕西省煤炭采购合同
- 《并购后整合策略》课件
- 导学案稳态与环境
- 2025届湖北武汉市华中师大一附中高考临考冲刺语文试卷含解析
- 2025年陕西高中学业水平合格性考试数学模拟试卷(含答案详解)
- 江苏省南通市海门区2024-2025学年第二学期九年级期中考试历史试卷(含答案)
- 微生物污染问题的防治策略试题及答案
- 2025年第六届(中小学组)国家版图知识竞赛测试题库及答案
- 《二次函数图像与性质》学习评价量规
- 2019版人教版教材习题高中物理必修3
- 直肠类癌rectalcarcinoid课件
- 关于互联网金融对商业银行风险影响的实证研究会计学专业
- 第1课 古代埃及-部编版历史九年级上册课件(共16张PPT)
- 十八项电网重大反事故措施
评论
0/150
提交评论