




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列各选项中,所求的最简公分母错误的是()A.与的最简公分母是6x B.与最简公分母是3a2b3cC.与的最简公分母是 D.与的最简公分母是m2-n22.在代数式和中,均可以取的值为()A.9 B.3 C.0 D.-23.实数a、b在数轴上对应点的位置如图所示,化简|a|-的结果是()A.-2a+b B.2a-bC.-b D.-2a-b4.4的算术平方根是()A.-2 B.2 C. D.5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44° B.66° C.88° D.92°6.以下列各线段长为边,能组成三角形的是()A. B. C. D.7.已知直线y=2x经过点(1,a),则a的值为()A.a=2 B.a=-1 C.a=-2 D.a=18.正常情况下,一个成年人的一根头发大约是0.0000012千克,用科学记数法表示应该是()A.1.2×10﹣5 B.1.2×10﹣6 C.0.12×10﹣5 D.0.12×10﹣69.下列计算正确的是()A.a3+a3=a6 B.a3•a3=a9 C.(a3)3=a9 D.(3a3)3=9a310.由四舍五入得到的近似数,精确到()A.万位 B.百位 C.百分位 D.个位11.一个三角形任意一边上的高都是这边上的中线,则对这个三角形最准确的判断是()A.等腰三角形 B.直角三角形 C.正三角形 D.等腰直角三角形12.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16 B.11 C.3 D.6二、填空题(每题4分,共24分)13.如图,已知中,,,,点D为AB的中点,如果点P在线段BC上以2厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若当与全等时,则点Q运动速度可能为____厘米秒.14.在△ABC中,∠ACB=90°,若AC=5,AB=13,则BC=___.15.如图,等腰直角三角形ABC中,AB=4cm.点是BC边上的动点,以AD为直角边作等腰直角三角形ADE.在点D从点B移动至点C的过程中,点E移动的路线长为________cm.16.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,若CB=6,那么DE+DB=_________.17.分解因式:3x3y﹣6x2y+3xy=_____.18.当x=1时,分式无意义;当x=2时,分式的值为0,则a+b=_____.三、解答题(共78分)19.(8分)在方格纸中的位置如图1所示,方格纸中的每个小正方形的边长为1个单位长度.(1)图1中线段的长是___________;请判断的形状,并说明理由.(2)请在图2中画出,使,,三边的长分别为,,.(3)如图3,以图1中的,为边作正方形和正方形,连接,求的面积.20.(8分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程(米)与小张出发后的时间(分)之间的函数图象如图所示.(1)求小张骑自行车的速度;(2)求小张停留后再出发时与之间的函数表达式:.(3)求小张与小李相遇时的值.21.(8分)如图,四边形ABCD中,CD∥AB,E是AD中点,CE交BA延长线于点F.(1)试说明:CD=AF;(2)若BC=BF,试说明:BE⊥CF.22.(10分)某校为奖励该校在南山区第二届学生技能大赛中表现突出的20名同学,派李老师为这些同学购买奖品,要求每人一件,李老师到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,购买笔记本没有优惠:买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>10)支钢笔,所需费用为y元,请你求出y与x之间的函数关系式;(3)在(2)的条件下,如果买同一种奖品,请你帮忙计算说明,买哪种奖品费用更低.23.(10分)如图,方格纸中,每个小正方形的边长都是1个单位长度,△ABC的三个顶点都在格点上.(1)画出△ABC关于点O成中心对称的△A1B1C1;(2)在线段DE上找一点P,△PAC的周长最小,请画出点P.24.(10分)如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数是多少?25.(12分)问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),请直接写出B点的坐标.26.已知:如图,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.
参考答案一、选择题(每题4分,共48分)1、C【解析】A.与的最简公分母是6x,故正确;B.与最简公分母是3a2b3c,故正确;C.与的最简公分母是,故不正确;D.与的最简公分母是m2-n2,故正确;故选C.2、A【分析】根据分式与算术平方根式有意义的条件,可得x的取值范围,一一判断可得答案.【详解】解:有题意得:和由意义,得:,可得;x>3,其中x可以为9,故选A.【点睛】本题主要考查分式与算术平方根式有意义的条件.3、C【分析】先由已知图判定a、0和b之间的大小关系,进而判定(a-b)的正负,再利用绝对值与二次根式性质化简原式即可得解.【详解】解:由图可知b>0>a∴a-b<0,a<0故原式可化为-a-(b-a)=-a-b+a=-b故选:C.【点睛】本题主要考察数轴与绝对值、二次根式性质综合,易错点在于能否正确确定各项符号.4、B【解析】试题分析:因,根据算术平方根的定义即可得4的算术平方根是1.故答案选B.考点:算术平方根的定义.5、D【分析】本题考察等腰三角形的性质,全等三角形的判定,三角形的外角定理.【详解】解:∵PA=PB,∴∠A=∠B,∵AM=BK,BN=AK,∴故选D.点睛:等腰三角形的两个底角相等,根据三角形全等的判定定理得出相等的角,本题的难点是外角的性质定理的利用,也是解题的关键.6、D【分析】根据三角形任意两边之和大于第三边进行判断即可.【详解】A:,故不能构成三角形;B:,故不能构成三角形;C:,故不能构成三角形;D:,故可以构成三角形;故选:D.【点睛】本题主要考查了三角形三边的关系,熟练掌握相关概念是解题关键.7、A【分析】将点点(1,a)的坐标代入直线的解析式即可求得a的值;【详解】解:∵直线y=2x经过点P(1,a),
∴a=2×1=2;故选:A【点睛】本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.8、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000012=1.2×10﹣1.故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9、C【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【详解】A、,此项错误B、,此项错误C、,此项正确D、,此项错误故选:C.【点睛】本题考查了整式的加减:合并同类项、同底数幂的乘法、幂的运算、积的乘方,熟记各运算法则是解题关键.10、B【分析】由于=80100,观察数字1所在的数位即可求得答案.【详解】解:∵=80100,数字1在百位上,∴近似数精确到百位,故选B.【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.11、C【解析】试题分析:根据等腰三角形的三线合一的性质求解即可.根据等腰三角形的三线合一的性质,可得三边相等,则对这个三角形最准确的判断是正三角形.故选C.考点:等腰三角形的性质点评:等腰三角形的三线合一的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.12、D【分析】根据三角形的三边关系即可解答.【详解】解:设第三边的长度为x,由题意得:7﹣3<x<7+3,即:4<x<10,故选:D.【点睛】本题考查三角形三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.二、填空题(每题4分,共24分)13、2或【分析】,表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可.【详解】,,点D为AB的中点,,设点P、Q的运动时间为t,则,当时,,解得:,则,故点Q的运动速度为:厘米秒;当时,,,秒.故点Q的运动速度为厘米秒.故答案为2或厘米秒【点睛】本题考查了全等三角形的判定,根据边角边分情况讨论是本题的难点.14、1【分析】根据勾股定理求解即可.【详解】由勾股定理得:.故答案为:1.【点睛】本题主要考查了勾股定理的运用,熟练掌握相关概念是解题的关键.15、【解析】试题解析:连接CE,如图:∵△ABC和△ADE为等腰直角三角形,∴AC=AB,AE=AD,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=∠3,∵,∴△ACE∽△ABD,∴∠ACE=∠ABC=90°,∴点D从点B移动至点C的过程中,总有CE⊥AC,即点E运动的轨迹为过点C与AC垂直的线段,AB=AB=4,当点D运动到点C时,CE=AC=4,∴点E移动的路线长为4cm.16、1【分析】据角平分线上的点到角的两边的距离相等可得,然后求出.【详解】解:,是的平分线,,,,,.故答案为:1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.17、3xy(x﹣1)1.【分析】直接提取公因式3xy,再利用公式法分解因式得出答案.【详解】解:原式=3xy(x1﹣1x+1)=3xy(x﹣1)1.故答案为:3xy(x﹣1)1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.18、3【分析】先根据分式无意义的条件可求出的值,再根据分式值为0的条件可求出b的值,最后将求出的a,b代入计算即可.【详解】因为当时,分式无意义,所以,解得:,因为当时,分式的值为零,所以,解得:,所以故答案为:3.【点睛】本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.三、解答题(共78分)19、(1)AB=,△ABC为直角三角形;(2)见解析;(3)5【分析】(1)根据勾股定理求出AB、BC、AC的长,即可判断△ABC的形状;(2)根据点D的位置和三边的长度,利用勾股定理找到格点画图图形;(3)由题意可知△RAD为直角三角形,直角边的长度分别为AB,AC的长,即可算出的面积.【详解】解:(1)AB=,△ABC为直角三角形,理由是:AB==,AC==,BC=5,∵,∴△ABC为直角三角形;(2)如图,即为所画三角形:(3)∵∠BAC=90°,∠BAR=∠CAD=90°,∴∠RAD=90°,∵AR=AB=,AD=AC=,∴=5.【点睛】此题主要考查了勾股定理以及三角形面积求法,利用勾股定理求出各边长是解题关键.20、(1)小张骑自行车的速度是300米/分;(2);(3)小张与小李相遇时的值是分【分析】(1)由图象看出小张的路程和时间,再根据速度公式求解即可;(2)首先求出点B的坐标,利用待定系数法求解即可;(3)求小李的函数解析式,列方程组求解即可.【详解】解:(1)由题意得:(米/分),答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:,设直线的解析式为:,把和代入得:,解得:,∴小张停留后再出发时与之间的函数表达式:;(3)小李骑摩托车所用的时间:,∵,,同理得:的解析式为:,则,,答:小张与小李相遇时的值是分.【点睛】本题考查了一次函数的路程问题,掌握待定系数法、一次函数的性质、解方程组的方法是解题的关键.21、(1)证明见解析;(2)证明见解析【分析】(1)由CD∥AB,可得∠CDE=∠FAE,而E是AD中点,因此有DE=AE,再有∠AEF=∠DEC,所以利用ASA可证△CDE≌△FAE,再利用全等三角形的性质,可得CD=AF;(2)先利用(1)中的三角形的全等,可得CE=FE,再根据BC=BF,利用等腰三角形三线合一的性质,可证BE⊥CF.【详解】证明:(1)∵CD∥AB,∴∠CDE=∠FAE,又∵E是AD中点,∴DE=AE,又∵∠AEF=∠DEC,∴△CDE≌△FAE,∴CD=AF;(2)∵BC=BF,∴△BCF是等腰三角形,又∵△CDE≌△FAE,∴CE=FE,∴BE⊥CF(等腰三角形底边上的中线与底边上的高相互重合).【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质;证明△CDE≌△FAE是正确解答本题的关键.22、(1)笔记本,钢笔单价分别为14元,15元;(2)y=-2x+310;(3)买钢笔费用低.【解析】(1)设笔记本,钢笔单价分别为x,y元列方程组求解;
(2)若买x(x>10)支钢笔,则买(20-x)本笔记本,根据单价可写出y与x之间的函数关系式;
(3)分别计算购买20本笔记本和20支钢笔的费用,比较即可.【详解】(1)设笔记本,钢笔单价分别为x,y元,根据题意得解得x=14,y=15,答:笔记本,钢笔单价分别为14元,15元;(2)y=14(20-x)+15×10+15×0.8(x-10)=-2x+310;(3)买20本笔记本费用:20×14=280元;买20支钢笔费用:10×15+10×15×0.8=270元,所以买钢笔费用低.【点睛】本题考查一次函数相关知识.正确列出表达式是解答关键.23、(1)见解析;(2)见解析【分析】(1)根据关于中心对称的两个图形,对应点的连线都经过对称中心O,并且被对称中心平分进行作图;(2)作出其中A、C中某一点关于直线DE的对称点,对称点与另一点的连线与直线DE的交点就是所要找的点.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,作A点关于直线DE的对称点M,连接MC与DE的交点即为所求的点P.【点睛】本题主要考查了利用图形的基本变换进行作图,解题时注意,涉及最短距离的问题,一般要考虑线段的性质定理,根据轴对称变换来解决,多数情况要作点关于某直线的对称点.24、20°.【分析】根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=180°﹣∠BAD=80°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),再求∠MAN的度数即可得出答案.【详解】如图,作A关于BC和CD的对称点A',A″,连接A'A″,交BC于M,交CD于N,则A'A″即为△AMN的周长最小值.∵∠DAB=100°,∴∠AA'M+∠A″=180°﹣∠BAD=180°﹣100°=80°.∵∠MA'A=∠MAA',∠NAD=∠A″,且∠MA'A+∠MAA'=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA'A+∠MAA'+∠NAD+∠A″=2(∠AA'M+∠A″)=2×80°=160°,∴∠MAN=180°﹣160°=20°.故当△AMN周长最小时,∠MAN的度数是20°.【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.25、(1)证明见解析;(2)DE=BD+CE;(3)B(1,4)【分析】(1)证明△ABD≌△CAE,根据全等三角形的性质得到AE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年秋招:建筑工程技术人员题目及答案
- 2025年阿里云规范考试题及答案
- 2025年添加辅食试题及答案
- 2025年俄罗斯竞赛题目真题
- 2025年上海保安面试题及答案
- 2025年通信技能竞赛题库答案
- 2025年南职试题及答案
- 2025年银行竞聘面试题库及答案
- 2025年预防艾滋病竞赛题库
- 2025年推 荐测试题及答案解析
- GB/T 41021-2021法庭科学DNA鉴定文书内容及格式
- 危险化学品重大危险源企业安全专项检查细则
- 健康教育专兼职名单表
- DB23T 2583-2020 固体矿产勘查放射性检查技术要求
- Q∕SY 17001-2016 泡沫排水采气用消泡剂技术规范
- 上海市智慧城市发展水平评估报告
- 空调设备维护保养制度(3篇)
- 广东江门市生育保险待遇申请表
- 检验科生物安全风险评估报告
- SYNTAX评分计算方法(1)
- 2020版北京刑事诉讼格式文书七律师会见犯罪嫌疑人被告人专用介绍信
评论
0/150
提交评论