下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列语句中正确的是()A.长度相等的两条弧是等弧B.平分弦的直径垂直于弦C.相等的圆心角所对的弧相等D.经过圆心的每一条直线都是圆的对称轴2.由3x=2y(x≠0),可得比例式为()A. B. C. D.3.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2 B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1 D.有最大值7,有最小值﹣24.如图,在平面直角坐标系内,正方形OABC的顶点A,B在第一象限内,且点A,B在反比例函数y=(k≠0)的图象上,点C在第四象限内.其中,点A的纵坐标为2,则k的值为()A.2﹣2 B.2﹣2 C.4﹣4 D.4﹣45.下列标志中是中心对称图形的是()A. B. C. D.6.抛物线y=x2+2x﹣3的最小值是()A.3B.﹣3C.4D.﹣47.已知关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是().A.k<1 B.k≤1 C.k≤1且k≠0 D.k<1且k≠08.关于抛物线y=3(x-1)2+2,下列说法错误的是()A.开口方向向上 B.对称轴是直线x=lC.顶点坐标为(1,2) D.当x>1时,y随x的增大而减小9.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A. B. C. D.10.如图,一根电线杆垂直于地面,并用两根拉线,固定,量得,,则拉线,的长度之比()A. B. C. D.11.某商场将进货价为45元的某种服装以65元售出,平均每天可售30件,为了尽快减少库存,商场决定采取适当的降价措施,调查发现:每件降价1元,则每天可多售5件,如果每天要盈利800元,每件应降价()A.12元 B.10元 C.11元 D.9元12.在同一平面直角坐标系中,若抛物线与关于y轴对称,则符合条件的m,n的值为()A.m=,n= B.m=5,n=-6 C.m=-1,n=6 D.m=1,n=-2二、填空题(每题4分,共24分)13.已知,则__________.14.函数y=x2﹣4x+3的图象与y轴交点的坐标为_____.15.一元二次方程的根是.16.已知x=1是方程x2﹣a=0的根,则a=__.17.平面直角坐标系xOy中,若点P在曲线y=上,连接OP,则OP的最小值为_____.18.如图,一辆汽车沿着坡度为的斜坡向下行驶50米,则它距离地面的垂直高度下降了米.三、解答题(共78分)19.(8分)如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.20.(8分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E(1)求证:DE是⊙O的切线.(2)求DE的长.21.(8分)如图,在□ABCD中,E是AD的中点,延长CB到点F,使BF=BC,连接BE、AF.(1)求证:四边形AFBE是平行四边形;(2)若AB=6,AD=8,∠C=60°,求BE的长.22.(10分)如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称.23.(10分)如图,点D是∠AOB的平分线OC上任意一点,过D作DE⊥OB于E,以DE为半径作⊙D,①判断⊙D与OA的位置关系,并证明你的结论.②通过上述证明,你还能得出哪些等量关系?24.(10分)已知正比例函数y=-3x与反比例函数y=交于点P(-1,n),求反比例函数的表达式25.(12分)为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)本次抽样调查学生的人数为.(2)补全两个统计图,并求出扇形统计图中A所对应扇形圆心角的度数.(3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.26.已知二次函数的图象顶点是,且经过,求这个二次函数的表达式.
参考答案一、选择题(每题4分,共48分)1、D【解析】分析:根据垂径定理及逆定理以及圆的性质来进行判定分析即可得出答案.详解:A、在同圆或等圆中,长度相等的两条弧是等弧;B、平分弦(不是直径)的直径垂直于弦;C、在同圆或等圆中,相等的圆心角所对的弧相等;D、经过圆心的每一条直线都是圆的对称轴;故选D.点睛:本题主要考查的是圆的一些基本性质,属于基础题型.理解圆的性质是解决这个问题的关键.2、C【分析】由3x=2y(x≠0),根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:A、由得,2x=3y,故本选项不符合题意;B、由得,2x=3y,故本选项不符合题意;C、由得,3x=2y,故本选项符合题意;D、由得,xy=6,故本选项不符合题意.故选:C.【点睛】本题考查比例的性质相关,主要利用了两内项之积等于两外项之积,熟练掌握其性质是解题的关键.3、D【分析】把函数解析式整理成顶点式的形式,然后根据二次函数的最值问题解答.【详解】解:∵y=x2−4x+2=(x−2)2−2,∴在−1≤x≤3的取值范围内,当x=2时,有最小值−2,当x=−1时,有最大值为y=9−2=1.故选D.【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式是解题的关键.4、B【分析】作AE⊥x轴于E,BF∥x轴,交AE于F,根据图象上点的坐标特征得出A(,2),证得△AOE≌△BAF(AAS),得出OE=AF,AE=BF,即可得到B(+2,2-),根据系数k的几何意义得到k=(+2)(2-),解得即可.【详解】解:作AE⊥x轴于E,BF//x轴,交AE于F,∵∠OAE+∠BAF=90°=∠OAE+∠AOE,∴∠BAF=∠AOE,在△AOE和△BAF中∴△AOE≌△BAF(AAS),∴OE=AF,AE=BF,∵点A,B在反比例函数y=(k≠0)的图象上,点A的纵坐标为2,∴A(,2),∴B(+2,2﹣),∴k=(+2)(2﹣),解得k=﹣2±2(负数舍去),∴k=2﹣2,故选:B.【点睛】本题考查了正方形的性质,全等三角形的性质与判定,反比例函数的图象与性质,关键是构造全等三角形.5、B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;
B、是中心对称图形,符合题意;
C、既不是轴对称图形,也不是中心对称的图形,不合题意;
D、是轴对称图形,不是中心对称的图形,不合题意.
故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.6、D【解析】把y=x2+2x﹣3配方变成顶点式,求出顶点坐标即可得抛物线的最小值.【详解】∵y=x2+2x﹣3=(x+1)2﹣1,∴顶点坐标为(﹣1,﹣1),∵a=1>0,∴开口向上,有最低点,有最小值为﹣1.故选:D.【点睛】本题考查二次函数最值的求法:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,熟练掌握并灵活运用适当方法是解题关键.7、C【解析】分析:判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.关于x的一元二次方程kx2-2x+1=1有实数根,则△=b2-4ac≥1.详解:∵a=k,b=-2,c=1,∴△=b2-4ac=(-2)2-4×k×1=4-4k≥1,k≤1,∵k是二次项系数不能为1,k≠1,即k≤1且k≠1.故选C.点睛:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8、D【分析】开口方向由a决定,看a是否大于0,由于抛物线为顶点式,可直接确定对称轴与顶点对照即可,由于抛物线开口向上,在对称轴左侧函数值随x的增大而减小,在对称轴右侧y随x的增大而增大即可.【详解】关于抛物线y=3(x-1)2+2,a=3>0,抛物线开口向上,A正确,x=1是对称轴,B正确,抛物线的顶点坐标是(1,2),C正确,由于抛物线开口向上,x<1,函数值随x的增大而减小,x>1时,y随x的增大而增大,D不正确.故选:D.【点睛】本题考查抛物线的性质问题,由具体抛物线的顶点式抓住有用信息,会用二次项系数确定开口方向与大小,会求对称轴,会写顶点坐标,会利用对称轴把函数的增减性一分为二,还要结合a确定增减问题.9、B【分析】利用概率公式直接计算即可.【详解】解:根据题意可得:袋子中有有3个白球,4个黄球和5个红球,共12个,从袋子中随机摸出一个球,它是黄色球的概率.故选B.【点睛】本题考查概率的计算,掌握公式正确计算是本题的解题关键.10、D【分析】根据锐角三角函数可得:和,从而求出.【详解】解:在Rt△AOP中,,在Rt△BOP中,,∴故选D.【点睛】此题考查的是锐角三角函数,掌握锐角三角函数的定义是解决此题的关键.11、B【分析】设应降价x元,根据题意列写方程并求解可得答案.【详解】设应降价x元则根据题意,等量方程为:(65-x-45)(30+5x)=800解得:x=4或x=10∵要尽快较少库存,∴x=4舍去故选:B.【点睛】本题考查一元二次方程利润问题的应用,需要注意最后有2个解,需要按照题干要求舍去其中一个解.12、D【解析】由两抛物线关于y轴对称,可知两抛物线的对称轴也关于y轴对称,与y轴交于同一点,由此可得二次项系数与常数项相同,一次项系数互为相反数,由此可得关于m、n的方程组,解方程组即可得.【详解】关于y轴对称,二次项系数与常数项相同,一次项系数互为相反数,∴,解之得,故选D.【点睛】本题考查了关于y轴对称的抛物线的解析式间的关系,弄清系数间的关系是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据比例的性质,由得,x=,再将其代入所求式子可得出结果.【详解】解:由得,x=,所以.故答案为:.【点睛】此题考查了比例的性质,熟练掌握比例的性质是解题的关键,较简单.14、(0,3).【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【点睛】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.15、【解析】四种解一元二次方程的解法即:直接开平方法,配方法,公式法,因式分解法.注意识别使用简单的方法进行求解,此题应用因式分解法较为简捷,因此,.16、1【分析】把x=1代入方程x2﹣a=0得1﹣a=0,然后解关于a的方程即可.【详解】解:把x=1代入方程x2﹣a=0得1﹣a=0,解得a=1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17、1【分析】设点P(a,b),根据反比例函数图象上点的坐标特征可得=18,根据=,且≥2ab,可求OP的最小值.【详解】解:设点P(a,b)∵点P在曲线y=上,∴=18∵≥0,∴≥2ab,∵=,且≥2ab,∴≥2ab=31,∴OP最小值为1.【点睛】本题考查了反比例函数图象上点的坐标特征,灵活运用≥2ab是本题的关键.18、25【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【详解】解:设垂直高度下降了x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=1.解得x=25,即它距离地面的垂直高度下降了25米.【点睛】此题考查三角函数的应用.关键是熟悉且会灵活应用公式:tanα(坡度)=垂直高度÷水平宽度,综合利用了勾股定理.三、解答题(共78分)19、(1)详见解析;(2)详见解析;(3)N点的坐标为(0,﹣1);(4)D点坐标为(3,0).【解析】试题分析:(1)根据题中给出的损矩形的定义,从图找出只有一组对角是直角的四边形即可;(2)证明四边形BADM四个顶点到BD的中点距离相等即可;(3)利用同弧所对的圆周角相等可得∠MAD=∠MBD,进而得到OA=ON,即可求得点N的坐标;(4)根据正方形的性质及损矩形含有的直角,利用勾股定理求解.(1)四边形ABMD为损矩形;(2)取BD中点H,连结MH,AH∵四边形OABC,BDEF是正方形∴△ABD,△BDM都是直角三角形∴HA=BDHM=BD∴HA=HB=HM=HD=BD∴损矩形ABMD一定有外接圆(3)∵损矩形ABMD一定有外接圆⊙H∴MAD=MBD∵四边形BDEF是正方形∴MBD=45°∴MAD=45°∴OAN=45°∵OA=1∴ON=1∴N点的坐标为(0,-1)(4)延长AB交MG于点P,过点M作MQ⊥轴于点Q设MG=,则四边形APMQ为正方形∴PM=AQ=-1∴OG=MQ=-1∵△MBP≌△MDQ∴DQ=BP=CG=-2∴MN2ND2MD2∵四边形DMGN为损矩形∴∴∴=2.5或=1(舍去)∴OD=3∴D点坐标为(3,0).考点:本题考查的是确定圆的条件,正方形的性质点评:解答本题的关键是理解损矩形的只有一组对角是直角的性质,20、(1)详见解析;(2)4.【解析】试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切线;(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.21、(1)证明见解析;(2).【分析】(1)根据平行四边形的性质证明,再由一组对边平行而且相等的四边形是平行四边形判定即可判定;
(2)过点A作AG⊥BF于G,构造30读直角三角形,利用平行四边形的性质和勾股定理解答即可.【详解】证明:(1)∵四边形为平行四边形,∴,,又∵是的中点,,∴,又∵,∴四边形是平行四边形.(2)过点作于,由可知:,∴,∴,又∵,,∴,,∴,在中,由勾股定理得:,在中,由勾股定理得:,∴.【点睛】本题考查了平行四边形的判定与性质、勾股定理.平行四边形的判定方法共有4种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.22、解:(1)所画△A1B1C1如图所示.(2)所画△A2B2C2如图所示.【分析】(1)图形的整体平移就是点的平移,找到图形中几个关键的点,也就是A,B,C点,依次的依照题目的要求平移得到对应的点,然后连接得到的点从而得到对应的图形;(2)在已知对称中心的前提下找到对应的对称图形,关键还是找点的对称点,找法是连接点与对称中心O点并延长相等的距离即为对称点的位置,最后将对称点依次连接得到关于O点成中心对称的图形。【详解】解:(1)所画△A1B1C1如图所示.(2)所画△A2B2C2如图所示.【点睛】图形的平移就是点的平移,依次将点进行平移再连接得到的图形即为平移后得到图形;一定要区分中心对称和轴对称,中心对称的对称中心是一个点,将原图沿着对称中心旋转180°可与原图重合;轴对称是关于一条直线对称,可沿着直线折叠与原图重合。23、(1)⊙D与OA的位置关系是相切,证明详见解析;(2)∠DOA=∠DOE,OE=OF.【分析】①首先过点D作DF⊥OA于F,由点D是∠AOB的平分线OC上任意一点,DE⊥OB,根据角平分线的性质,即可得DF=DE,则可得D到直线OA的距离等于⊙D的半径DE,则可证得⊙D与OA相切.
②根据切线的性质解答即可.【详解】解:①⊙D与OA的位置关系是相切,
证明:过D作DF⊥OA于F,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职电气技术应用(继电控制)试题及答案
- 2025年大学动物科学(动物营养与饲料)试题及答案
- 2026年吉林单招技能拔尖考生综合素质测试题含答案免考资格适配
- 2026年山西单招人工智能技术应用专业基础题库含答案
- 2026年广西单招职业适应性测试机考经典题含答案
- 2026年陕西普高生单招职业适应性测试短期提分题库含答案1个月冲刺
- 2026年青海退役士兵单招技能测试零基础专用题库含答案
- 2026年青岛单招电子信息类职业适应性判断题集含答案机考适配
- 企业管理岗考试题及答案
- 人大申硕法学题库及答案
- 2026(人教版)数学五上期末复习大全(知识梳理+易错题+压轴题+模拟卷)
- DB3205-T 1123-2024 职业教育集团建设与运行规范
- 2025年政府财务岗面试题及答案
- 广东省东华高级中学2026届高一化学第一学期期末统考试题含解析
- 2025医疗器械检测行业全面分析及质量监管与发展趋势报告
- 口腔诊所管理运营培训课件
- 中国葡萄膜炎临床诊断要点专家共识2025
- 受益所有人识别与风险管理培训
- 幼儿园每日消毒及安全管理操作规范
- 2025年军队文职保管员题库及答案(可下载)
- 西游记车迟国课件
评论
0/150
提交评论