版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SlidesbyJOHNLOUCKSSt.Edward’sUniversityStatisticsforBusinessandEconomics,11EAnderson/Sweeney/WilliamsSlidesbyChapter21
DecisionAnalysisProblemFormulationDecisionMakingwithProbabilitiesDecisionAnalysis withSampleInformationComputingBranchProbabilities UsingBayes’TheoremChapter21
DecisionAnalysisPrProblemFormulationThefirststepinthedecisionanalysisprocessisproblemformulation.Webeginwithaverbalstatementoftheproblem.Thenweidentify:thedecisionalternativesthestatesofnature(uncertainfutureevents)thepayoffs(consequences)associatedwitheachspecificcombinationof:decisionalternativestateofnatureProblemFormulationThefirstsProblemFormulationAdecisionproblemischaracterizedbydecisionalternatives,statesofnature,andresultingpayoffs.Thedecisionalternativesarethedifferentpossiblestrategiesthedecisionmakercanemploy.Thestatesofnaturerefertofutureevents,notunderthecontrolofthedecisionmaker,whichmayoccur.Statesofnatureshouldbedefinedsothattheyaremutuallyexclusiveandcollectivelyexhaustive.ProblemFormulationAdecisionTheconsequenceresultingfromaspecificcombinationofadecisionalternativeandastateofnatureisapayoff.PayoffTablesAtableshowingpayoffsforallcombinationsofdecisionalternativesandstatesofnatureisapayofftable.Payoffscanbeexpressedintermsofprofit,cost,time,distanceoranyotherappropriatemeasure.TheconsequenceresultingfromDecisionTreesAdecisiontreeprovidesagraphicalrepresentationshowingthesequentialnatureofthedecision-makingprocess.Eachdecisiontreehastwotypesofnodes:roundnodescorrespondtothestatesofnaturesquarenodescorrespondtothedecisionalternativesDecisionTreesAdecisiontreeDecisionTreesThebranchesleavingeachroundnoderepresentthedifferentstatesofnaturewhilethebranchesleavingeachsquarenoderepresentthedifferentdecisionalternatives.Attheendofeachlimbofatreearethepayoffsattainedfromtheseriesofbranchesmakingupthatlimb.DecisionTreesThebranchesleaDecisionMakingwithProbabilitiesOncewehavedefinedthedecisionalternativesandstatesofnatureforthechanceevents,wefocusondeterminingprobabilitiesforthestatesofnature.Theclassicalmethod,relativefrequencymethod,orsubjectivemethodofassigningprobabilitiesmaybeused.BecauseoneandonlyoneoftheNstatesofnaturecanoccur,theprobabilitiesmustsatisfytwoconditions:P(sj)>0forallstatesofnatureDecisionMakingwithProbabiliDecisionMakingwithProbabilitiesThenweusetheexpectedvalueapproachtoidentifythebestorrecommendeddecisionalternative.Theexpectedvalueofeachdecisionalternativeiscalculated(explainedonthenextslide).Thedecisionalternativeyieldingthebestexpectedvalueischosen.DecisionMakingwithProbabiliExpectedValueApproach where:N=thenumberofstatesofnature
P(sj)=theprobabilityofstateofnaturesj
Vij=thepayoffcorrespondingtodecision alternativediandstateofnaturesjTheexpectedvalue(EV)ofdecisionalternativediisdefinedasTheexpectedvalueofadecisionalternativeisthesumofweightedpayoffsforthedecisionalternative.ExpectedValueApproach where:ExpectedValueApproach BurgerPrinceRestaurantisconsidering openinganewrestaurantonMainStreet. Ithasthreedifferentmodels,each withadifferentseatingcapacity. BurgerPrinceestimatesthattheaverage numberofcustomersperhourwillbe 80,100,or120.Thepayofftableforthe threemodelsisonthenextslide.Example:BurgerPrinceExpectedValueApproach BurgeExpectedValueApproachPayoffTable$6,000$16,000$21,000$8,000$18,000$12,000$10,000$15,000$14,000AverageNumberofCustomersPerHours1=80s2=100s3=120ModelAModelBModelCExpectedValueApproachPayoffExpectedValueApproachCalculatetheexpectedvalueforeachdecision.Thedecisiontreeonthenextslidecanassistinthiscalculation.Hered1,d2,d3representthedecisionalternativesofmodelsA,B,andC.Ands1,s2,s3representthestatesofnatureof80,100,and120customersperhour.ExpectedValueApproachCalcula..2.4d1d2d3s1s1s1s2s3s2s2s3s3Payoffs10,00015,00014,0008,00018,00012,0006,00016,00021,000234ExpectedValueApproachDecisionTree..2.4d1d2d3s1s1sExpectedValueApproach3d1d2d3EMV=.4(10,000)+.2(15,000)+.4(14,000)=$12,600EMV=.4(8,000)+.2(18,000)+.4(12,000)=$11,600EMV=.4(6,000)+.2(16,000) +.4(21,000)=$14,000ModelAModelBModelC214ChoosethemodelwithlargestEV,ModelCExpectedValueApproach3d1d2d3ExpectedValueofPerfectInformationFrequently,informationisavailablethatcanimprovetheprobabilityestimatesforthestatesofnature.Theexpectedvalueofperfectinformation(EVPI)istheincreaseintheexpectedprofitthatwouldresultifoneknewwithcertaintywhichstateofnaturewouldoccur.TheEVPIprovidesanupperboundontheexpectedvalueofanysampleorsurveyinformation.ExpectedValueofPerfectInfoTheexpectedvalueofperfectinformationisdefinedasExpectedValueofPerfectInformationEVPI=|EVwPI–EVwoPI|EVPI=expectedvalueofperfectinformationEVwPI=expectedvaluewithperfectinformationaboutthestatesofnatureEVwoPI=expectedvaluewithoutperfectinformationaboutthestatesofnaturewhere:TheexpectedvalueofperfectStep1: Determinetheoptimalreturncorrespondingtoeachstateofnature.Step3: SubtracttheEVoftheoptimaldecisionfromtheamountdeterminedinstep(2).Step2: Computetheexpectedvalueoftheseoptimalreturns.ExpectedValueofPerfectInformationEVPICalculationStep1:Step3:Step2:ExpectedEVPI=.4(10,000)+.2(18,000)+.4(21,000)-14,000=$2,000ExpectedValueofPerfectInformationCalculatetheexpectedvaluefortheoptimumpayoffforeachstateofnatureandsubtracttheEVoftheoptimaldecision.EVPI=.4(10,000)+.2(18,000)DecisionAnalysisWithSampleInformationKnowledgeofsample(survey)informationcanbeusedtorevisetheprobabilityestimatesforthestatesofnature.Priortoobtainingthisinformation,theprobabilityestimatesforthestatesofnaturearecalledpriorprobabilities.Withknowledgeofconditionalprobabilitiesfortheoutcomesorindicatorsofthesampleorsurveyinformation,thesepriorprobabilitiescanberevisedbyemployingBayes'Theorem.Theoutcomesofthisanalysisarecalledposteriorprobabilitiesorbranchprobabilitiesfordecisiontrees.DecisionAnalysisWithSampleAdecisionstrategyisasequenceofdecisionsandchanceoutcomes.Thedecisionschosendependontheyettobedeterminedoutcomesofchanceevents.Theapproachusedtodeterminetheoptimaldecisionstrategyisbasedonabackwardpassthroughthedecisiontree.DecisionAnalysisWithSampleInformationDecisionStrategyAdecisionstrategyisasequeAtChanceNodes: Computetheexpectedvaluebymultiplyingthepayoffattheendofeachbranchbythecorrespondingbranchprobability.AtDecisionNodes: Selectthedecisionbranchthatleadstothebestexpectedvalue.Thisexpectedvaluebecomestheexpectedvalueatthedecisionnode.DecisionAnalysisWithSampleInformationBackwardPassThroughtheDecisionTreeAtChanceNodes:AtDecisionNo
BurgerPrincemustdecidewhethertopurchasea marketingsurveyfromStantonMarketingfor$1,000. Theresultsofthesurveyare"favorable"or "unfavorable".Theconditional probabilitiesare:DecisionAnalysisWithSampleInformationExample:BurgerPrinceP(favorable|
120customersperhour)=.9P(favorable|
100customersperhour)=.5P(favorable|
80customersperhour)=.2 BurgerPrincemustdecidDecisionTree(tophalf)s1(.148)s1(.148)s1(.148)s2(.185)s2(.185)s2(.185)s3(.667)s3(.667)s3(.667)$10,000$15,000$14,000$8,000$18,000$12,000$6,000$16,000$21,000I1(.54)d1d2d324561DecisionAnalysisWithSampleInformationDecisionTree(tophalf)s1(.1DecisionTree(bottomhalf)s1(.696)s1(.696)s1(.696)s2(.217)s2(.217)s2(.217)s3(.087)s3(.087)s3(.087)$10,000$15,000$14,000$8,000$18,000$12,000$6,000$16,000$21,000d1d2d337891
I2(.46)DecisionAnalysisWithSampleInformationDecisionTree(bottomhalf)s1
I2(.46)d1d2d3EMV=.696(10,000)+.217(15,000)+.087(14,000)=$11,433EMV=.696(8,000)+.217(18,000)+.087(12,000)=$10,554EMV=.696(6,000)+.217(16,000)+.087(21,000)=$9,475
I1(.54)d1d2d3EMV=.148(10,000)+.185(15,000)+.667(14,000)=$13,593EMV=.148(8,000)+.185(18,000)+.667(12,000)=$12,518EMV=.148(6,000)+.185(16,000)+.667(21,000)=$17,855456789231$17,855$11,433DecisionAnalysisWithSampleInformationI2d1d2d3EMV=.696(10,000)+ExpectedValueofSampleInformationTheexpectedvalueofsampleinformation(EVSI)istheadditionalexpectedprofitpossiblethroughknowledgeofthesampleorsurveyinformation.EVSI=|EVwSI–EVwoSI|EVSI=expectedvalueofsampleinformationEVwSI=expectedvaluewithsampleinformationaboutthestatesofnatureEVwoSI=expectedvaluewithoutsampleinformationaboutthestatesofnaturewhere:ExpectedValueofSampleInforStep1: Determinetheoptimaldecisionanditsexpectedreturnforthepossibleoutcomesofthesampleusingtheposteriorprobabilitiesforthestatesofnature.Step2:
Computetheexpectedvalueoftheseoptimalreturns.ExpectedValueofSampleInformationEVwSICalculationStep1:Step2:ExpectedValue
I2(.46)d1d2d3$11,433$10,554$9,475
I1(.54)d1d2d3$13,593$12,518$17,855456789231$17,855$11,433DecisionAnalysisWithSampleInformationEVwSI=.54(17,855) +.46(11,433) =$14,900.88I2d1d2d3$11,433$10,554$9,4ExpectedValueofSampleInformationIftheoutcomeofthesurveyis"favorable”, chooseModelC.Iftheoutcomeofthesurveyis“unfavorable”,chooseModelA.EVwSI=.54($17,855)+.46($11,433)=$14,900.88ExpectedValueofSampleInforExpectedValueofSampleInformationSubtracttheEVwoSI(thevalueoftheoptimaldecisionobtainedwithoutusingthesampleinformation)fromtheEVwSI.EVSICalculationEVSI=.54($17,855)+.46($11,433)-$14,000=$900.88Conclusion BecausetheEVSIislessthanthecostofthesurvey,thesurveyshouldnotbepurchased.ExpectedValueofSampleInforComputingBranchProbabilities
UsingBayes’TheoremBayes’Theoremcanbeusedtocomputebranchprobabilitiesfordecisiontrees.Forthecomputationsweneedtoknow:theinitial(prior)probabilitiesforthestatesofnature,theconditionalprobabilitiesfortheoutcomesorindicatorsofthesampleinformationgiveneachstateofnature.Atabularapproachisaconvenientmethodforcarryingoutthecomputations.ComputingBranchProbabilitiesStep1ComputingBranchProbabilities
UsingBayes’TheoremForeachstateofnature,multiplythepriorprobabilitybyitsconditionalprobabilityfortheindicator.Thisgivesthejointprobabilitiesforthestatesandindicator.Step2Sumthesejointprobabilitiesoverallstates.Thisgivesthemarginalprobabilityfortheindicator.Step3Foreachstate,divideitsjointprobabilitybythemarginalprobabilityfortheindicator.Thisgivestheposteriorprobabilitydistribution.Step1ComputingBranchProbabi
RecallthatBurgerPrinceisconsideringpurchasinga marketingsurveyfromStantonMarketing.Theresults ofthesurveyare"favorable“or"unfavorable".The conditionalprobabilitiesare:DecisionAnalysisWithSampleInformationExample:BurgerPrinceP(favorable|
120customersperhour)=.9P(favorable|
100customersperhour)=.5P(favorable|
80customersperhour)=.2Computethebranch(posterior)probabilitydistribution. RecallthatBurgerPrincPosteriorProbabilitiesP(favorable)=.54Total.54State
Prior
Conditional
Joint
PosteriorFavorable.048.185.6671.000.08/.5480100.2.5.9PosteriorProbabilitiesP(favorPosteriorProbabilitiesP(unfavorable)=.46Total.46State
Prior
Conditional
Joint
PosteriorUnfavorable.32.10.04.696.217.0871.000.32/.4680100.8.5.1PosteriorProbabilitiesP(unfavEndofChapter21EndofChapter21SlidesbyJOHNLOUCKSSt.Edward’sUniversityStatisticsforBusinessandEconomics,11EAnderson/Sweeney/WilliamsSlidesbyChapter21
DecisionAnalysisProblemFormulationDecisionMakingwithProbabilitiesDecisionAnalysis withSampleInformationComputingBranchProbabilities UsingBayes’TheoremChapter21
DecisionAnalysisPrProblemFormulationThefirststepinthedecisionanalysisprocessisproblemformulation.Webeginwithaverbalstatementoftheproblem.Thenweidentify:thedecisionalternativesthestatesofnature(uncertainfutureevents)thepayoffs(consequences)associatedwitheachspecificcombinationof:decisionalternativestateofnatureProblemFormulationThefirstsProblemFormulationAdecisionproblemischaracterizedbydecisionalternatives,statesofnature,andresultingpayoffs.Thedecisionalternativesarethedifferentpossiblestrategiesthedecisionmakercanemploy.Thestatesofnaturerefertofutureevents,notunderthecontrolofthedecisionmaker,whichmayoccur.Statesofnatureshouldbedefinedsothattheyaremutuallyexclusiveandcollectivelyexhaustive.ProblemFormulationAdecisionTheconsequenceresultingfromaspecificcombinationofadecisionalternativeandastateofnatureisapayoff.PayoffTablesAtableshowingpayoffsforallcombinationsofdecisionalternativesandstatesofnatureisapayofftable.Payoffscanbeexpressedintermsofprofit,cost,time,distanceoranyotherappropriatemeasure.TheconsequenceresultingfromDecisionTreesAdecisiontreeprovidesagraphicalrepresentationshowingthesequentialnatureofthedecision-makingprocess.Eachdecisiontreehastwotypesofnodes:roundnodescorrespondtothestatesofnaturesquarenodescorrespondtothedecisionalternativesDecisionTreesAdecisiontreeDecisionTreesThebranchesleavingeachroundnoderepresentthedifferentstatesofnaturewhilethebranchesleavingeachsquarenoderepresentthedifferentdecisionalternatives.Attheendofeachlimbofatreearethepayoffsattainedfromtheseriesofbranchesmakingupthatlimb.DecisionTreesThebranchesleaDecisionMakingwithProbabilitiesOncewehavedefinedthedecisionalternativesandstatesofnatureforthechanceevents,wefocusondeterminingprobabilitiesforthestatesofnature.Theclassicalmethod,relativefrequencymethod,orsubjectivemethodofassigningprobabilitiesmaybeused.BecauseoneandonlyoneoftheNstatesofnaturecanoccur,theprobabilitiesmustsatisfytwoconditions:P(sj)>0forallstatesofnatureDecisionMakingwithProbabiliDecisionMakingwithProbabilitiesThenweusetheexpectedvalueapproachtoidentifythebestorrecommendeddecisionalternative.Theexpectedvalueofeachdecisionalternativeiscalculated(explainedonthenextslide).Thedecisionalternativeyieldingthebestexpectedvalueischosen.DecisionMakingwithProbabiliExpectedValueApproach where:N=thenumberofstatesofnature
P(sj)=theprobabilityofstateofnaturesj
Vij=thepayoffcorrespondingtodecision alternativediandstateofnaturesjTheexpectedvalue(EV)ofdecisionalternativediisdefinedasTheexpectedvalueofadecisionalternativeisthesumofweightedpayoffsforthedecisionalternative.ExpectedValueApproach where:ExpectedValueApproach BurgerPrinceRestaurantisconsidering openinganewrestaurantonMainStreet. Ithasthreedifferentmodels,each withadifferentseatingcapacity. BurgerPrinceestimatesthattheaverage numberofcustomersperhourwillbe 80,100,or120.Thepayofftableforthe threemodelsisonthenextslide.Example:BurgerPrinceExpectedValueApproach BurgeExpectedValueApproachPayoffTable$6,000$16,000$21,000$8,000$18,000$12,000$10,000$15,000$14,000AverageNumberofCustomersPerHours1=80s2=100s3=120ModelAModelBModelCExpectedValueApproachPayoffExpectedValueApproachCalculatetheexpectedvalueforeachdecision.Thedecisiontreeonthenextslidecanassistinthiscalculation.Hered1,d2,d3representthedecisionalternativesofmodelsA,B,andC.Ands1,s2,s3representthestatesofnatureof80,100,and120customersperhour.ExpectedValueApproachCalcula..2.4d1d2d3s1s1s1s2s3s2s2s3s3Payoffs10,00015,00014,0008,00018,00012,0006,00016,00021,000234ExpectedValueApproachDecisionTree..2.4d1d2d3s1s1sExpectedValueApproach3d1d2d3EMV=.4(10,000)+.2(15,000)+.4(14,000)=$12,600EMV=.4(8,000)+.2(18,000)+.4(12,000)=$11,600EMV=.4(6,000)+.2(16,000) +.4(21,000)=$14,000ModelAModelBModelC214ChoosethemodelwithlargestEV,ModelCExpectedValueApproach3d1d2d3ExpectedValueofPerfectInformationFrequently,informationisavailablethatcanimprovetheprobabilityestimatesforthestatesofnature.Theexpectedvalueofperfectinformation(EVPI)istheincreaseintheexpectedprofitthatwouldresultifoneknewwithcertaintywhichstateofnaturewouldoccur.TheEVPIprovidesanupperboundontheexpectedvalueofanysampleorsurveyinformation.ExpectedValueofPerfectInfoTheexpectedvalueofperfectinformationisdefinedasExpectedValueofPerfectInformationEVPI=|EVwPI–EVwoPI|EVPI=expectedvalueofperfectinformationEVwPI=expectedvaluewithperfectinformationaboutthestatesofnatureEVwoPI=expectedvaluewithoutperfectinformationaboutthestatesofnaturewhere:TheexpectedvalueofperfectStep1: Determinetheoptimalreturncorrespondingtoeachstateofnature.Step3: SubtracttheEVoftheoptimaldecisionfromtheamountdeterminedinstep(2).Step2: Computetheexpectedvalueoftheseoptimalreturns.ExpectedValueofPerfectInformationEVPICalculationStep1:Step3:Step2:ExpectedEVPI=.4(10,000)+.2(18,000)+.4(21,000)-14,000=$2,000ExpectedValueofPerfectInformationCalculatetheexpectedvaluefortheoptimumpayoffforeachstateofnatureandsubtracttheEVoftheoptimaldecision.EVPI=.4(10,000)+.2(18,000)DecisionAnalysisWithSampleInformationKnowledgeofsample(survey)informationcanbeusedtorevisetheprobabilityestimatesforthestatesofnature.Priortoobtainingthisinformation,theprobabilityestimatesforthestatesofnaturearecalledpriorprobabilities.Withknowledgeofconditionalprobabilitiesfortheoutcomesorindicatorsofthesampleorsurveyinformation,thesepriorprobabilitiescanberevisedbyemployingBayes'Theorem.Theoutcomesofthisanalysisarecalledposteriorprobabilitiesorbranchprobabilitiesfordecisiontrees.DecisionAnalysisWithSampleAdecisionstrategyisasequenceofdecisionsandchanceoutcomes.Thedecisionschosendependontheyettobedeterminedoutcomesofchanceevents.Theapproachusedtodeterminetheoptimaldecisionstrategyisbasedonabackwardpassthroughthedecisiontree.DecisionAnalysisWithSampleInformationDecisionStrategyAdecisionstrategyisasequeAtChanceNodes: Computetheexpectedvaluebymultiplyingthepayoffattheendofeachbranchbythecorrespondingbranchprobability.AtDecisionNodes: Selectthedecisionbranchthatleadstothebestexpectedvalue.Thisexpectedvaluebecomestheexpectedvalueatthedecisionnode.DecisionAnalysisWithSampleInformationBackwardPassThroughtheDecisionTreeAtChanceNodes:AtDecisionNo
BurgerPrincemustdecidewhethertopurchasea marketingsurveyfromStantonMarketingfor$1,000. Theresultsofthesurveyare"favorable"or "unfavorable".Theconditional probabilitiesare:DecisionAnalysisWithSampleInformationExample:BurgerPrinceP(favorable|
120customersperhour)=.9P(favorable|
100customersperhour)=.5P(favorable|
80customersperhour)=.2 BurgerPrincemustdecidDecisionTree(tophalf)s1(.148)s1(.148)s1(.148)s2(.185)s2(.185)s2(.185)s3(.667)s3(.667)s3(.667)$10,000$15,000$14,000$8,000$18,000$12,000$6,000$16,000$21,000I1(.54)d1d2d324561DecisionAnalysisWithSampleInformationDecisionTree(tophalf)s1(.1DecisionTree(bottomhalf)s1(.696)s1(.696)s1(.696)s2(.217)s2(.217)s2(.217)s3(.087)s3(.087)s3(.087)$10,000$15,000$14,000$8,000$18,000$12,000$6,000$16,000$21,000d1d2d337891
I2(.46)DecisionAnalysisWithSampleInformationDecisionTree(bottomhalf)s1
I2(.46)d1d2d3EMV=.696(10,000)+.217(15,000)+.087(14,000)=$11,433EMV=.696(8,000)+.217(18,000)+.087(12,000)=$10,554EMV=.696(6,000)+.217(16,000)+.087(21,000)=$9,475
I1(.54)d1d2d3EMV=.148(10,000)+.185(15,000)+.667(14,000)=$13,593EMV=.148(8,000)+.185(18,000)+.667(12,000)=$12,518EMV=.148(6,000)+.185(16,000)+.667(21,000)=$17,855456789231$17,855$11,433DecisionAnalysisWithSampleInformationI2d1d2d3EMV=.696(10,000)+ExpectedValueofSampleInformationTheexpectedvalueofsampleinformation(EVSI)istheadditionalexpectedprofitpossiblethroughknowledgeofthesampleorsurveyinformation.EVSI=|EVwSI–EVwoSI|EVSI=expectedvalueofsampleinformationEVwSI=expectedvaluewithsampleinformationaboutthestatesofnatureEVwoSI=expectedvaluewithoutsampleinformationaboutthestatesofnaturewhere:ExpectedValueofSampleInforStep1: Determinetheoptimaldecisionanditsexpectedreturnforthepossibleoutcomesofthesampleusingtheposteriorprobabilitiesforthestatesofnature.Step2:
Computetheexpectedvalueoftheseoptimalreturns.ExpectedValueofSampleInformationEVwSICalculationStep1:Step2:ExpectedValue
I2(.46)d1d2d3$11,433$10,554$9,475
I1(.54)d1d2d3$13,593$12,518$17,855456789231$17,855$11,433DecisionAnalysisWithSampleInformationEVwSI=.54(17,855) +.46(11,433) =$14,900.88I2d1d2d3$11,4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年山东铝业职业学院单招职业适应性考试备考试题及答案解析
- 2026年营口职业技术学院单招职业适应性测试模拟试题及答案解析
- 2026年益阳职业技术学院单招职业适应性考试参考题库及答案解析
- 2026年昆明卫生职业学院单招职业适应性测试备考题库及答案解析
- 2026年焦作工贸职业学院单招职业适应性考试备考试题及答案解析
- 2026年湖南中医药高等专科学校单招职业适应性测试备考题库及答案解析
- 2026年广西经贸职业技术学院单招职业适应性考试参考题库及答案解析
- 2026年河南质量工程职业学院单招职业适应性考试参考题库及答案解析
- 2026年吉林城市职业技术学院单招职业适应性测试备考题库及答案解析
- 期末考试个人总结18篇
- 2026福建春季高考语文总复习:名篇名句默写(知识梳理+考点)原卷版
- 郑州市2025届高中毕业年级第一次质量预测数学试题及答案解析
- 学霸养成之第一性原理-2025-2026学年高二上学期学习方法指导班会
- 投资策略分析报告:波动趋势量化剥离策略
- 2025国家外汇管理局中央外汇业务中心社会在职人员招聘3人考试笔试备考题库及答案解析
- 景德镇市中医院护理疑难病例讨论组织与管理试题
- 中铁四局河沙合同范本
- 高职院校五育并举实施方案
- 美团代理加盟合同范本
- 预见性护理及早期风险识别
- 2025《药品管理法》培训试题及答案
评论
0/150
提交评论