版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SlidesbyJOHNLOUCKSSt.Edward’sUniversityStatisticsforBusinessandEconomics,11EAnderson/Sweeney/WilliamsSlidesbyChapter21
DecisionAnalysisProblemFormulationDecisionMakingwithProbabilitiesDecisionAnalysis withSampleInformationComputingBranchProbabilities UsingBayes’TheoremChapter21
DecisionAnalysisPrProblemFormulationThefirststepinthedecisionanalysisprocessisproblemformulation.Webeginwithaverbalstatementoftheproblem.Thenweidentify:thedecisionalternativesthestatesofnature(uncertainfutureevents)thepayoffs(consequences)associatedwitheachspecificcombinationof:decisionalternativestateofnatureProblemFormulationThefirstsProblemFormulationAdecisionproblemischaracterizedbydecisionalternatives,statesofnature,andresultingpayoffs.Thedecisionalternativesarethedifferentpossiblestrategiesthedecisionmakercanemploy.Thestatesofnaturerefertofutureevents,notunderthecontrolofthedecisionmaker,whichmayoccur.Statesofnatureshouldbedefinedsothattheyaremutuallyexclusiveandcollectivelyexhaustive.ProblemFormulationAdecisionTheconsequenceresultingfromaspecificcombinationofadecisionalternativeandastateofnatureisapayoff.PayoffTablesAtableshowingpayoffsforallcombinationsofdecisionalternativesandstatesofnatureisapayofftable.Payoffscanbeexpressedintermsofprofit,cost,time,distanceoranyotherappropriatemeasure.TheconsequenceresultingfromDecisionTreesAdecisiontreeprovidesagraphicalrepresentationshowingthesequentialnatureofthedecision-makingprocess.Eachdecisiontreehastwotypesofnodes:roundnodescorrespondtothestatesofnaturesquarenodescorrespondtothedecisionalternativesDecisionTreesAdecisiontreeDecisionTreesThebranchesleavingeachroundnoderepresentthedifferentstatesofnaturewhilethebranchesleavingeachsquarenoderepresentthedifferentdecisionalternatives.Attheendofeachlimbofatreearethepayoffsattainedfromtheseriesofbranchesmakingupthatlimb.DecisionTreesThebranchesleaDecisionMakingwithProbabilitiesOncewehavedefinedthedecisionalternativesandstatesofnatureforthechanceevents,wefocusondeterminingprobabilitiesforthestatesofnature.Theclassicalmethod,relativefrequencymethod,orsubjectivemethodofassigningprobabilitiesmaybeused.BecauseoneandonlyoneoftheNstatesofnaturecanoccur,theprobabilitiesmustsatisfytwoconditions:P(sj)>0forallstatesofnatureDecisionMakingwithProbabiliDecisionMakingwithProbabilitiesThenweusetheexpectedvalueapproachtoidentifythebestorrecommendeddecisionalternative.Theexpectedvalueofeachdecisionalternativeiscalculated(explainedonthenextslide).Thedecisionalternativeyieldingthebestexpectedvalueischosen.DecisionMakingwithProbabiliExpectedValueApproach where:N=thenumberofstatesofnature
P(sj)=theprobabilityofstateofnaturesj
Vij=thepayoffcorrespondingtodecision alternativediandstateofnaturesjTheexpectedvalue(EV)ofdecisionalternativediisdefinedasTheexpectedvalueofadecisionalternativeisthesumofweightedpayoffsforthedecisionalternative.ExpectedValueApproach where:ExpectedValueApproach BurgerPrinceRestaurantisconsidering openinganewrestaurantonMainStreet. Ithasthreedifferentmodels,each withadifferentseatingcapacity. BurgerPrinceestimatesthattheaverage numberofcustomersperhourwillbe 80,100,or120.Thepayofftableforthe threemodelsisonthenextslide.Example:BurgerPrinceExpectedValueApproach BurgeExpectedValueApproachPayoffTable$6,000$16,000$21,000$8,000$18,000$12,000$10,000$15,000$14,000AverageNumberofCustomersPerHours1=80s2=100s3=120ModelAModelBModelCExpectedValueApproachPayoffExpectedValueApproachCalculatetheexpectedvalueforeachdecision.Thedecisiontreeonthenextslidecanassistinthiscalculation.Hered1,d2,d3representthedecisionalternativesofmodelsA,B,andC.Ands1,s2,s3representthestatesofnatureof80,100,and120customersperhour.ExpectedValueApproachCalcula..2.4d1d2d3s1s1s1s2s3s2s2s3s3Payoffs10,00015,00014,0008,00018,00012,0006,00016,00021,000234ExpectedValueApproachDecisionTree..2.4d1d2d3s1s1sExpectedValueApproach3d1d2d3EMV=.4(10,000)+.2(15,000)+.4(14,000)=$12,600EMV=.4(8,000)+.2(18,000)+.4(12,000)=$11,600EMV=.4(6,000)+.2(16,000) +.4(21,000)=$14,000ModelAModelBModelC214ChoosethemodelwithlargestEV,ModelCExpectedValueApproach3d1d2d3ExpectedValueofPerfectInformationFrequently,informationisavailablethatcanimprovetheprobabilityestimatesforthestatesofnature.Theexpectedvalueofperfectinformation(EVPI)istheincreaseintheexpectedprofitthatwouldresultifoneknewwithcertaintywhichstateofnaturewouldoccur.TheEVPIprovidesanupperboundontheexpectedvalueofanysampleorsurveyinformation.ExpectedValueofPerfectInfoTheexpectedvalueofperfectinformationisdefinedasExpectedValueofPerfectInformationEVPI=|EVwPI–EVwoPI|EVPI=expectedvalueofperfectinformationEVwPI=expectedvaluewithperfectinformationaboutthestatesofnatureEVwoPI=expectedvaluewithoutperfectinformationaboutthestatesofnaturewhere:TheexpectedvalueofperfectStep1: Determinetheoptimalreturncorrespondingtoeachstateofnature.Step3: SubtracttheEVoftheoptimaldecisionfromtheamountdeterminedinstep(2).Step2: Computetheexpectedvalueoftheseoptimalreturns.ExpectedValueofPerfectInformationEVPICalculationStep1:Step3:Step2:ExpectedEVPI=.4(10,000)+.2(18,000)+.4(21,000)-14,000=$2,000ExpectedValueofPerfectInformationCalculatetheexpectedvaluefortheoptimumpayoffforeachstateofnatureandsubtracttheEVoftheoptimaldecision.EVPI=.4(10,000)+.2(18,000)DecisionAnalysisWithSampleInformationKnowledgeofsample(survey)informationcanbeusedtorevisetheprobabilityestimatesforthestatesofnature.Priortoobtainingthisinformation,theprobabilityestimatesforthestatesofnaturearecalledpriorprobabilities.Withknowledgeofconditionalprobabilitiesfortheoutcomesorindicatorsofthesampleorsurveyinformation,thesepriorprobabilitiescanberevisedbyemployingBayes'Theorem.Theoutcomesofthisanalysisarecalledposteriorprobabilitiesorbranchprobabilitiesfordecisiontrees.DecisionAnalysisWithSampleAdecisionstrategyisasequenceofdecisionsandchanceoutcomes.Thedecisionschosendependontheyettobedeterminedoutcomesofchanceevents.Theapproachusedtodeterminetheoptimaldecisionstrategyisbasedonabackwardpassthroughthedecisiontree.DecisionAnalysisWithSampleInformationDecisionStrategyAdecisionstrategyisasequeAtChanceNodes: Computetheexpectedvaluebymultiplyingthepayoffattheendofeachbranchbythecorrespondingbranchprobability.AtDecisionNodes: Selectthedecisionbranchthatleadstothebestexpectedvalue.Thisexpectedvaluebecomestheexpectedvalueatthedecisionnode.DecisionAnalysisWithSampleInformationBackwardPassThroughtheDecisionTreeAtChanceNodes:AtDecisionNo
BurgerPrincemustdecidewhethertopurchasea marketingsurveyfromStantonMarketingfor$1,000. Theresultsofthesurveyare"favorable"or "unfavorable".Theconditional probabilitiesare:DecisionAnalysisWithSampleInformationExample:BurgerPrinceP(favorable|
120customersperhour)=.9P(favorable|
100customersperhour)=.5P(favorable|
80customersperhour)=.2 BurgerPrincemustdecidDecisionTree(tophalf)s1(.148)s1(.148)s1(.148)s2(.185)s2(.185)s2(.185)s3(.667)s3(.667)s3(.667)$10,000$15,000$14,000$8,000$18,000$12,000$6,000$16,000$21,000I1(.54)d1d2d324561DecisionAnalysisWithSampleInformationDecisionTree(tophalf)s1(.1DecisionTree(bottomhalf)s1(.696)s1(.696)s1(.696)s2(.217)s2(.217)s2(.217)s3(.087)s3(.087)s3(.087)$10,000$15,000$14,000$8,000$18,000$12,000$6,000$16,000$21,000d1d2d337891
I2(.46)DecisionAnalysisWithSampleInformationDecisionTree(bottomhalf)s1
I2(.46)d1d2d3EMV=.696(10,000)+.217(15,000)+.087(14,000)=$11,433EMV=.696(8,000)+.217(18,000)+.087(12,000)=$10,554EMV=.696(6,000)+.217(16,000)+.087(21,000)=$9,475
I1(.54)d1d2d3EMV=.148(10,000)+.185(15,000)+.667(14,000)=$13,593EMV=.148(8,000)+.185(18,000)+.667(12,000)=$12,518EMV=.148(6,000)+.185(16,000)+.667(21,000)=$17,855456789231$17,855$11,433DecisionAnalysisWithSampleInformationI2d1d2d3EMV=.696(10,000)+ExpectedValueofSampleInformationTheexpectedvalueofsampleinformation(EVSI)istheadditionalexpectedprofitpossiblethroughknowledgeofthesampleorsurveyinformation.EVSI=|EVwSI–EVwoSI|EVSI=expectedvalueofsampleinformationEVwSI=expectedvaluewithsampleinformationaboutthestatesofnatureEVwoSI=expectedvaluewithoutsampleinformationaboutthestatesofnaturewhere:ExpectedValueofSampleInforStep1: Determinetheoptimaldecisionanditsexpectedreturnforthepossibleoutcomesofthesampleusingtheposteriorprobabilitiesforthestatesofnature.Step2:
Computetheexpectedvalueoftheseoptimalreturns.ExpectedValueofSampleInformationEVwSICalculationStep1:Step2:ExpectedValue
I2(.46)d1d2d3$11,433$10,554$9,475
I1(.54)d1d2d3$13,593$12,518$17,855456789231$17,855$11,433DecisionAnalysisWithSampleInformationEVwSI=.54(17,855) +.46(11,433) =$14,900.88I2d1d2d3$11,433$10,554$9,4ExpectedValueofSampleInformationIftheoutcomeofthesurveyis"favorable”, chooseModelC.Iftheoutcomeofthesurveyis“unfavorable”,chooseModelA.EVwSI=.54($17,855)+.46($11,433)=$14,900.88ExpectedValueofSampleInforExpectedValueofSampleInformationSubtracttheEVwoSI(thevalueoftheoptimaldecisionobtainedwithoutusingthesampleinformation)fromtheEVwSI.EVSICalculationEVSI=.54($17,855)+.46($11,433)-$14,000=$900.88Conclusion BecausetheEVSIislessthanthecostofthesurvey,thesurveyshouldnotbepurchased.ExpectedValueofSampleInforComputingBranchProbabilities
UsingBayes’TheoremBayes’Theoremcanbeusedtocomputebranchprobabilitiesfordecisiontrees.Forthecomputationsweneedtoknow:theinitial(prior)probabilitiesforthestatesofnature,theconditionalprobabilitiesfortheoutcomesorindicatorsofthesampleinformationgiveneachstateofnature.Atabularapproachisaconvenientmethodforcarryingoutthecomputations.ComputingBranchProbabilitiesStep1ComputingBranchProbabilities
UsingBayes’TheoremForeachstateofnature,multiplythepriorprobabilitybyitsconditionalprobabilityfortheindicator.Thisgivesthejointprobabilitiesforthestatesandindicator.Step2Sumthesejointprobabilitiesoverallstates.Thisgivesthemarginalprobabilityfortheindicator.Step3Foreachstate,divideitsjointprobabilitybythemarginalprobabilityfortheindicator.Thisgivestheposteriorprobabilitydistribution.Step1ComputingBranchProbabi
RecallthatBurgerPrinceisconsideringpurchasinga marketingsurveyfromStantonMarketing.Theresults ofthesurveyare"favorable“or"unfavorable".The conditionalprobabilitiesare:DecisionAnalysisWithSampleInformationExample:BurgerPrinceP(favorable|
120customersperhour)=.9P(favorable|
100customersperhour)=.5P(favorable|
80customersperhour)=.2Computethebranch(posterior)probabilitydistribution. RecallthatBurgerPrincPosteriorProbabilitiesP(favorable)=.54Total.54State
Prior
Conditional
Joint
PosteriorFavorable.048.185.6671.000.08/.5480100.2.5.9PosteriorProbabilitiesP(favorPosteriorProbabilitiesP(unfavorable)=.46Total.46State
Prior
Conditional
Joint
PosteriorUnfavorable.32.10.04.696.217.0871.000.32/.4680100.8.5.1PosteriorProbabilitiesP(unfavEndofChapter21EndofChapter21SlidesbyJOHNLOUCKSSt.Edward’sUniversityStatisticsforBusinessandEconomics,11EAnderson/Sweeney/WilliamsSlidesbyChapter21
DecisionAnalysisProblemFormulationDecisionMakingwithProbabilitiesDecisionAnalysis withSampleInformationComputingBranchProbabilities UsingBayes’TheoremChapter21
DecisionAnalysisPrProblemFormulationThefirststepinthedecisionanalysisprocessisproblemformulation.Webeginwithaverbalstatementoftheproblem.Thenweidentify:thedecisionalternativesthestatesofnature(uncertainfutureevents)thepayoffs(consequences)associatedwitheachspecificcombinationof:decisionalternativestateofnatureProblemFormulationThefirstsProblemFormulationAdecisionproblemischaracterizedbydecisionalternatives,statesofnature,andresultingpayoffs.Thedecisionalternativesarethedifferentpossiblestrategiesthedecisionmakercanemploy.Thestatesofnaturerefertofutureevents,notunderthecontrolofthedecisionmaker,whichmayoccur.Statesofnatureshouldbedefinedsothattheyaremutuallyexclusiveandcollectivelyexhaustive.ProblemFormulationAdecisionTheconsequenceresultingfromaspecificcombinationofadecisionalternativeandastateofnatureisapayoff.PayoffTablesAtableshowingpayoffsforallcombinationsofdecisionalternativesandstatesofnatureisapayofftable.Payoffscanbeexpressedintermsofprofit,cost,time,distanceoranyotherappropriatemeasure.TheconsequenceresultingfromDecisionTreesAdecisiontreeprovidesagraphicalrepresentationshowingthesequentialnatureofthedecision-makingprocess.Eachdecisiontreehastwotypesofnodes:roundnodescorrespondtothestatesofnaturesquarenodescorrespondtothedecisionalternativesDecisionTreesAdecisiontreeDecisionTreesThebranchesleavingeachroundnoderepresentthedifferentstatesofnaturewhilethebranchesleavingeachsquarenoderepresentthedifferentdecisionalternatives.Attheendofeachlimbofatreearethepayoffsattainedfromtheseriesofbranchesmakingupthatlimb.DecisionTreesThebranchesleaDecisionMakingwithProbabilitiesOncewehavedefinedthedecisionalternativesandstatesofnatureforthechanceevents,wefocusondeterminingprobabilitiesforthestatesofnature.Theclassicalmethod,relativefrequencymethod,orsubjectivemethodofassigningprobabilitiesmaybeused.BecauseoneandonlyoneoftheNstatesofnaturecanoccur,theprobabilitiesmustsatisfytwoconditions:P(sj)>0forallstatesofnatureDecisionMakingwithProbabiliDecisionMakingwithProbabilitiesThenweusetheexpectedvalueapproachtoidentifythebestorrecommendeddecisionalternative.Theexpectedvalueofeachdecisionalternativeiscalculated(explainedonthenextslide).Thedecisionalternativeyieldingthebestexpectedvalueischosen.DecisionMakingwithProbabiliExpectedValueApproach where:N=thenumberofstatesofnature
P(sj)=theprobabilityofstateofnaturesj
Vij=thepayoffcorrespondingtodecision alternativediandstateofnaturesjTheexpectedvalue(EV)ofdecisionalternativediisdefinedasTheexpectedvalueofadecisionalternativeisthesumofweightedpayoffsforthedecisionalternative.ExpectedValueApproach where:ExpectedValueApproach BurgerPrinceRestaurantisconsidering openinganewrestaurantonMainStreet. Ithasthreedifferentmodels,each withadifferentseatingcapacity. BurgerPrinceestimatesthattheaverage numberofcustomersperhourwillbe 80,100,or120.Thepayofftableforthe threemodelsisonthenextslide.Example:BurgerPrinceExpectedValueApproach BurgeExpectedValueApproachPayoffTable$6,000$16,000$21,000$8,000$18,000$12,000$10,000$15,000$14,000AverageNumberofCustomersPerHours1=80s2=100s3=120ModelAModelBModelCExpectedValueApproachPayoffExpectedValueApproachCalculatetheexpectedvalueforeachdecision.Thedecisiontreeonthenextslidecanassistinthiscalculation.Hered1,d2,d3representthedecisionalternativesofmodelsA,B,andC.Ands1,s2,s3representthestatesofnatureof80,100,and120customersperhour.ExpectedValueApproachCalcula..2.4d1d2d3s1s1s1s2s3s2s2s3s3Payoffs10,00015,00014,0008,00018,00012,0006,00016,00021,000234ExpectedValueApproachDecisionTree..2.4d1d2d3s1s1sExpectedValueApproach3d1d2d3EMV=.4(10,000)+.2(15,000)+.4(14,000)=$12,600EMV=.4(8,000)+.2(18,000)+.4(12,000)=$11,600EMV=.4(6,000)+.2(16,000) +.4(21,000)=$14,000ModelAModelBModelC214ChoosethemodelwithlargestEV,ModelCExpectedValueApproach3d1d2d3ExpectedValueofPerfectInformationFrequently,informationisavailablethatcanimprovetheprobabilityestimatesforthestatesofnature.Theexpectedvalueofperfectinformation(EVPI)istheincreaseintheexpectedprofitthatwouldresultifoneknewwithcertaintywhichstateofnaturewouldoccur.TheEVPIprovidesanupperboundontheexpectedvalueofanysampleorsurveyinformation.ExpectedValueofPerfectInfoTheexpectedvalueofperfectinformationisdefinedasExpectedValueofPerfectInformationEVPI=|EVwPI–EVwoPI|EVPI=expectedvalueofperfectinformationEVwPI=expectedvaluewithperfectinformationaboutthestatesofnatureEVwoPI=expectedvaluewithoutperfectinformationaboutthestatesofnaturewhere:TheexpectedvalueofperfectStep1: Determinetheoptimalreturncorrespondingtoeachstateofnature.Step3: SubtracttheEVoftheoptimaldecisionfromtheamountdeterminedinstep(2).Step2: Computetheexpectedvalueoftheseoptimalreturns.ExpectedValueofPerfectInformationEVPICalculationStep1:Step3:Step2:ExpectedEVPI=.4(10,000)+.2(18,000)+.4(21,000)-14,000=$2,000ExpectedValueofPerfectInformationCalculatetheexpectedvaluefortheoptimumpayoffforeachstateofnatureandsubtracttheEVoftheoptimaldecision.EVPI=.4(10,000)+.2(18,000)DecisionAnalysisWithSampleInformationKnowledgeofsample(survey)informationcanbeusedtorevisetheprobabilityestimatesforthestatesofnature.Priortoobtainingthisinformation,theprobabilityestimatesforthestatesofnaturearecalledpriorprobabilities.Withknowledgeofconditionalprobabilitiesfortheoutcomesorindicatorsofthesampleorsurveyinformation,thesepriorprobabilitiescanberevisedbyemployingBayes'Theorem.Theoutcomesofthisanalysisarecalledposteriorprobabilitiesorbranchprobabilitiesfordecisiontrees.DecisionAnalysisWithSampleAdecisionstrategyisasequenceofdecisionsandchanceoutcomes.Thedecisionschosendependontheyettobedeterminedoutcomesofchanceevents.Theapproachusedtodeterminetheoptimaldecisionstrategyisbasedonabackwardpassthroughthedecisiontree.DecisionAnalysisWithSampleInformationDecisionStrategyAdecisionstrategyisasequeAtChanceNodes: Computetheexpectedvaluebymultiplyingthepayoffattheendofeachbranchbythecorrespondingbranchprobability.AtDecisionNodes: Selectthedecisionbranchthatleadstothebestexpectedvalue.Thisexpectedvaluebecomestheexpectedvalueatthedecisionnode.DecisionAnalysisWithSampleInformationBackwardPassThroughtheDecisionTreeAtChanceNodes:AtDecisionNo
BurgerPrincemustdecidewhethertopurchasea marketingsurveyfromStantonMarketingfor$1,000. Theresultsofthesurveyare"favorable"or "unfavorable".Theconditional probabilitiesare:DecisionAnalysisWithSampleInformationExample:BurgerPrinceP(favorable|
120customersperhour)=.9P(favorable|
100customersperhour)=.5P(favorable|
80customersperhour)=.2 BurgerPrincemustdecidDecisionTree(tophalf)s1(.148)s1(.148)s1(.148)s2(.185)s2(.185)s2(.185)s3(.667)s3(.667)s3(.667)$10,000$15,000$14,000$8,000$18,000$12,000$6,000$16,000$21,000I1(.54)d1d2d324561DecisionAnalysisWithSampleInformationDecisionTree(tophalf)s1(.1DecisionTree(bottomhalf)s1(.696)s1(.696)s1(.696)s2(.217)s2(.217)s2(.217)s3(.087)s3(.087)s3(.087)$10,000$15,000$14,000$8,000$18,000$12,000$6,000$16,000$21,000d1d2d337891
I2(.46)DecisionAnalysisWithSampleInformationDecisionTree(bottomhalf)s1
I2(.46)d1d2d3EMV=.696(10,000)+.217(15,000)+.087(14,000)=$11,433EMV=.696(8,000)+.217(18,000)+.087(12,000)=$10,554EMV=.696(6,000)+.217(16,000)+.087(21,000)=$9,475
I1(.54)d1d2d3EMV=.148(10,000)+.185(15,000)+.667(14,000)=$13,593EMV=.148(8,000)+.185(18,000)+.667(12,000)=$12,518EMV=.148(6,000)+.185(16,000)+.667(21,000)=$17,855456789231$17,855$11,433DecisionAnalysisWithSampleInformationI2d1d2d3EMV=.696(10,000)+ExpectedValueofSampleInformationTheexpectedvalueofsampleinformation(EVSI)istheadditionalexpectedprofitpossiblethroughknowledgeofthesampleorsurveyinformation.EVSI=|EVwSI–EVwoSI|EVSI=expectedvalueofsampleinformationEVwSI=expectedvaluewithsampleinformationaboutthestatesofnatureEVwoSI=expectedvaluewithoutsampleinformationaboutthestatesofnaturewhere:ExpectedValueofSampleInforStep1: Determinetheoptimaldecisionanditsexpectedreturnforthepossibleoutcomesofthesampleusingtheposteriorprobabilitiesforthestatesofnature.Step2:
Computetheexpectedvalueoftheseoptimalreturns.ExpectedValueofSampleInformationEVwSICalculationStep1:Step2:ExpectedValue
I2(.46)d1d2d3$11,433$10,554$9,475
I1(.54)d1d2d3$13,593$12,518$17,855456789231$17,855$11,433DecisionAnalysisWithSampleInformationEVwSI=.54(17,855) +.46(11,433) =$14,900.88I2d1d2d3$11,4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46478-2025永磁体磁化方法
- 全国安全培训教育中心课件
- 《智能控制技术》课件 5.2智能制造系统
- 全员安全教育培训横幅课件
- 全员安全培训教育说明课件
- 生物技术专业就业前景
- 全县安全培训课件
- 全体教师安全培训简报课件
- 直播封面设计话术
- 光遗传学技术
- 2025宁夏贺兰工业园区管委会招聘40人模拟笔试试题及答案解析
- 建设单位项目安全生产保证体系
- 2026期末家长会:初三备战没有不辛苦的 教学课件
- 真空乳化设备维护与清洁操作手册
- 上海财经大学2026年辅导员及其他非教学科研岗位人员招聘备考题库带答案详解
- 2026湖北恩施州建始县教育局所属事业单位专项招聘高中教师28人备考笔试试题及答案解析
- 2025贵州铜仁市“千名英才·智汇铜仁”本地引才413人参考笔试题库及答案解析
- 心肺康复课件
- 2025中原农业保险股份有限公司招聘67人笔试参考题库附带答案详解(3卷)
- 2026年内蒙古商贸职业学院单招职业技能测试题库及参考答案详解一套
- 退赃后赔偿协议书
评论
0/150
提交评论