版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF2.4的算术平方根是()A.±4 B.4 C.±2 D.23.已知:如图,是的中线,,点为垂足,,则的长为()A. B. C. D.4.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E、F为AB上的一点,CF⊥AD于H,下列判断正确的有()A.AD是△ABE的角平分线 B.BE是△ABD边AD上的中线C.AH为△ABC的角平分线 D.CH为△ACD边AD上的高5.一个三角形的三条边长分别为,则的值有可能是下列哪个数()A. B. C. D.6.一元二次方程,经过配方可变形为()A. B. C. D.7.函数y=中自变量x的取值范围是()A.x>2 B.x≤2 C.x≥2 D.x≠28.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,59.已知,则a+b+c的值是()A.2 B.4 C.±4 D.±210.△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2 B.a=5,b=12,c=13 C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:511.如图,小明从地出发,沿直线前进15米后向左转18°,再沿直线前进15米,又向左转18°⋯⋯,照这样走下去,他第一次回到出发地地时,一共走的路程是()A.200米 B.250米 C.300米 D.350米12.某校八年级一班抽取5名女生进行800米跑测试,她们的成绩分别为75,85,90,80,90(单位:分),则这次抽测成绩的众数和中位数分别是()A.90,85 B.85,84 C.84,90 D.90,90二、填空题(每题4分,共24分)13.分解因式:3a2+6a+3=_____.14.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E等于_____度.15.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.16.因式分解x-4x3=_________.17.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车相遇后都停下来休息,快车休息2个小时后,以原速的继续向甲行驶,慢车休息3小时后,接到紧急任务,以原速的返回甲地,结果快车比慢车早2.25小时到达甲地,两车之间的距离S(千米)与慢车出发的时间t(小时)的函数图象如图所示,则当快车到达甲地时,慢车距乙地______千米.18.如图,若∠1=∠D=39°,∠C=51°,则∠B=___________°;三、解答题(共78分)19.(8分)如图,直线分别交和于点、,点在上,,且.求证:.20.(8分)已知,平分,点分别在上.(1)如图1,若于点,于点.①利用等腰三角形“三线合一”,将补成一个等边三角形,可得的数量关系为________.②请问:是否等于呢?如果是,请予以证明.(2)如图2,若,则(1)中的结论是否仍然成立?若成立,请予以证明;若不成立,请说明理由.21.(8分)如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).22.(10分)解方程:(1);(2);(3).23.(10分)如图,已知CD∥BF,∠B+∠D=180°,求证:AB∥DE.24.(10分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1;(2)点P在x轴上,且点P到点A与点C的距离之和最小,直接写出点P的坐标为.25.(12分)某校组织全校2000名学生进行了环保知识竞赛,为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了频数分布表和频数分布直方图(不完整):分组频数频率50.5~60.5200.0560.5~70.548△70.5~80.5△0.2080.5~90.51040.2690.5~100.5148△合计△1根据所给信息,回答下列问题:(1)补全频数分布表;(2)补全频数分布直方图;(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请你估算出全校获奖学生的人数.26.从地到地全程千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为,在高速公路上行驶的速度为,一辆客车从地开往地一共行驶了.求、两地间国道和高速公路各多少千米.(列方程组,解应用题)
参考答案一、选择题(每题4分,共48分)1、D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.2、D【分析】如果一个正数x的平方等于a,即x2=a(x>0),那么这个正数x叫做a的算术平方根.【详解】解:4的算术平方根是2.故选D.【点睛】本题考查了算术平方根的定义,熟练掌握相关定义是解题关键.3、B【分析】先证△BDF≌△CDE,得到DE=3,再证∠2=60°,根据30°角所对的直角边是斜边的一半,求出DC的长,再求BC的长即可【详解】解:∵AD是△ABC中线,在△BDF和△CDE中,
∴△BDF≌△CDE(AAS).∴DF=DE,∵EF=6,
∴DE=3,
∵,∠1+∠2=180°,∴∠2=60°,∴∠DCE=30°,∴DC=6,∴BC=12,故选B.【点睛】本题考查全等三角形的判断和性质,垂直的定义,中线的定义,解题的关键是熟练掌握全等三角形的判定.4、D【解析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【详解】A.根据三角形的角平分线的概念,知AG是△ABE的角平分线,故本选项错误;B.根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故本选项错误;C.根据三角形的角平分线的概念,知AD是△ABC的角平分线,故本选项错误;D.根据三角形的高的概念,知CH为△ACD的边AD上的高,故本选项正确;故选D.【点睛】此题考查三角形的角平分线、中线和高,解题关键在于掌握其定义.5、B【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围,从而得出结果.【详解】解:根据题意得:7-4<x<7+4,
即3<x<11,
故选:B.【点睛】本题考查三角形的三边关系,关键是理解如何根据已知的两条边求第三边的范围.6、A【解析】x2-4x+4-4-6=(x-2)2-10=0,即(x-2)2=10;故选A.7、B【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和的条件,要使在实数范围内有意义,必须.故选B.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.8、C【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选C.【点睛】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9、D【分析】先计算(a+b+c)2,再将代入即可求解.【详解】∵∴∴=4∴a+b+c=±2故选:D【点睛】本题考查了代数式的求值,其中用到了.10、D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;
B、∵52+122=132,
∴此三角形是直角三角形,故本选项不符合题意;
C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C
∴∠A=90°,
∴此三角形是直角三角形,故本选项不符合题意;
D、设∠A=3x,则∠B=4x,∠C=5x,
∵∠A+∠B+∠C=180°,
∴3x+4x+5x=180°,解得x=15°
∴∠C=5×15°=75°,
∴此三角形不是直角三角形,故本选项符号要求;
故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.11、C【分析】由题意可知小明所走的路线为一个正多边形,根据多边形的外角和进行分析即可求出答案.【详解】解:正多边形的边数为:360°÷18°=20,∴路程为:15×20=300(米).故选:C.【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.12、A【分析】由题意直接根据众数和中位数的概念,结合题干数据求解即可.【详解】解:将这组数据按照从小到大的顺序排列为:75,80,1,90,90,则众数为90,中位数为1.故选:A.【点睛】本题考查众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(每题4分,共24分)13、3(a+1)2【分析】首先提取公因式,然后应用完全平方公式继续分解.【详解】3a2+6a+3=.故答案为.考点:分解因式.14、1【分析】由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=38°,可得∠E度数.【详解】解:如图,记矩形的对角线的交点为,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,∠E=∠DAE,∠ADB=∠CAD=38°,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=1°.故答案为:1.【点睛】本题主要考查矩形性质,等腰三角形的性质,平行线的性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.15、64°【解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.16、.【分析】先提取公因式,然后再用平方差公式进行因式分解即可.【详解】解:故答案为:.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握平方差公式和完全平方公式的结构正确计算是本题的解题关键.17、620【分析】设慢车的速度为a千米/时,快车的速度为b千米/时,根据题意可得5(a+b)=800,,联立求出a、b的值即可解答.【详解】解:设慢车的速度为a千米/时,快车的速度为b千米/时,由图可知两车5个小时后相遇,且总路程为800千米,则5a+5b=800,即a+b=160,再根据题意快车休息2个小时后,以原速的继续向甲行驶,则快车到达甲地的时间为:,同理慢车回到甲地的时间为:,而快车比慢车早到2.25小时,但是由题意知快车为休息2小时出发而慢车是休息3小时,即实际慢车比快车晚出发1小时,即实际快车到甲地所花时间比慢车快2.25-1=1.25小时,即:,化简得5a=3b,联立得,解得,所以两车相遇的时候距离乙地为=500千米,快车到位甲地的时间为=2.5小时,而慢车比快车多休息一个小时则此时慢车应该往甲地行驶了1.5小时,此时慢车往甲地行驶了=120千米,所以此时慢车距离乙地为500+120=620千米,即快车到达甲地时,慢车距乙地620千米.故答案为620.【点睛】本题主要考查的是一次函数的应用,根据图象得出相应的信息是解题的关键.18、129°【解析】∵∠1=∠D=39°,∴AB∥CD.∵∠C=51°,∴∠B=180°-51°=129°.三、解答题(共78分)19、见解析【分析】先根据证明EP∥FQ,再利用得到∠AEM=∠CFM,由此得到结论.【详解】,∴EP∥QF,,,,∴AB∥CD.【点睛】此题考查平行线的性质及判定定理,熟记定理并能熟练综合运用两者解题是关键.20、(1)①(或),理由见解析;②,理由见解析;(2)仍成立,理由见解析【分析】(1)①由题意利用角平分线的性质以及含角的直角三角形性质进行分析即可;②根据题意利用①的结论进行等量代换求解即可;(2)根据题意过点分别作的垂线,垂足分别为,进而利用全等三角形判定得出,以此进行分析即可.【详解】解:(1)①(或)平分,,又,利用等腰三角形“三线合一”,将补成一个等边三角形,可知②证明:由①知,同理,平分,,又,,(2)仍成立证明:过点分别作的垂线,垂足分别为平分,又由(1)中②知.【点睛】本题考查等腰三角形性质以及全等三角形判定,熟练掌握角平分线的性质以及含角的直角三角形性质和全等三角形判定定理是解题的关键.21、(1)CD=BE.理由见解析;(2)△AMN是等边三角形.理由见解析.【分析】(1)CD=BE.利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE≌△ACD;然后根据全等三角形的对应边相等即可求得结论CD=BE;(2)△AMN是等边三角形.首先利用全等三角形“△ABE≌△ACD”的对应角相等、已知条件“M、N分别是BE、CD的中点”、等边△ABC的性质证得△ABM≌△ACN;然后利用全等三角形的对应边相等、对应角相等求得AM=AN、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.【详解】(1)CD=BE.理由如下:∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=60°,∵∠BAE=∠BAC﹣∠EAC=60°﹣∠EAC,∠DAC=∠DAE﹣∠EAC=60°﹣∠EAC,∴∠BAE=∠DAC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS)∴CD=BE(2)△AMN是等边三角形.理由如下:∵△ABE≌△ACD,∴∠ABE=∠ACD.∵M、N分别是BE、CD的中点,∴BM=CN∵AB=AC,∠ABE=∠ACD,在△ABM和△ACN中,,∴△ABM≌△ACN(SAS).∴AM=AN,∠MAB=∠NAC.∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN是等边三角形【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.22、(1);(2);(3).【分析】(1)把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(3)把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1),解得,经检验是原方程的解,(2),解得:经检验是分式方程的解.(3)5x=-3解得检验:当时,∴是原方程的解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23、见解析【分析】利用平行线的性质定理可得∠BOD=∠B,等量代换可得∠BOD+∠D=180°,利用同旁内角互补,两直线平行可得结论.【详解】证明:∵CD∥BF,
∴∠BOD=∠B,
∵∠B+∠D=180°,
∴∠BOD+∠D=180°,
∴AB∥DE.【点睛】考查了平行线的性质定理和判定定理,综合运用定理是解答此题的关键.24、(1)答案见解析;(2)(0,0).【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点的位置,然后顺次连接即可;
(2)找出点C关于x轴的对称点C′,连接AC′与x轴的交点即为所求的点P,根据直线AC'的解析式即可得解.【详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,作点C关于x轴的对称点C'(﹣2,﹣2),连接AC',交x轴于P,由A、C'的坐标可得AC'的解析式为y=x,当y=0时,x=0,∴点P的坐标为(0,0).故答案为:(0,0).【点睛】此题考查轴对称变换作图,最短路线,熟
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国装配式建筑行业政策环境与市场增长潜力研究报告
- 二建基础知识课件
- 2025至2030中国医用敷料行业发展趋势与投资价值评估报告
- 二十大信息技术
- 四川省人民政府科学城办事处关于所属事业单位2025年12月考核招聘教师的备考题库及一套答案详解
- 2025-2030中国船用燃料油市场经营现状及重点企业竞争策略研究研究报告
- 2025-2030中国可得然胶市场战略规划及未来发展态势展望研究报告
- 2025-2030中国藏药市场需求前景及未来发展动向分析研究报告
- 北京中医药大学东方医院2026年护理应届毕业生招聘备考题库及参考答案详解1套
- 机关作风建设培训课件
- 2025-2026学年总务主任年度述职报告
- 2026届北京东城55中高一数学第一学期期末质量检测试题含解析
- 2026年辽宁医药职业学院单招职业技能考试参考题库附答案详解
- 2026年湖南大众传媒职业技术学院单招综合素质考试备考试题附答案详解
- 医疗AI辅助治疗决策支持
- 穴位贴敷的运用课件
- 2026《初中英语•优翼学练优》八上早读本
- 钢拱架加工技术规范
- 移动式脚手架培训课件
- 2025年快递行业快递行业发展现状分析报告
- 金瓶梅课件教学
评论
0/150
提交评论