




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图平行四边变形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则S△BFE∶S△FDA等于()A.2∶5 B.4∶9 C.4∶25 D.2∶32.在平面直角坐标系中,将关于轴的对称点绕原点逆时针旋转得到,则点的坐标是()A. B. C. D.3.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖4.将抛物线y=x2﹣2向右平移3个单位长度,再向上平移2个单位长度,则所得抛物线的解析式为()A.y=(x+3)2 B.y=(x﹣3)2 C.y=(x+2)2+1 D.y=(x﹣2)2+15.已知△ABC的外接圆⊙O,那么点O是△ABC的()A.三条中线交点 B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线交点6.抛物线y=3x2﹣6x+4的顶点坐标是()A.(1,1) B.(﹣1,1) C.(﹣1,﹣2) D.(1,2)7.在Rt△ABC中,∠C=90°,AC=9,BC=12,则其外接圆的半径为()A.15 B.7.5 C.6 D.38.已知抛物线(其中是常数,)的顶点坐标为.有下列结论:①若,则;②若点与在该抛物线上,当时,则;③关于的一元二次方程有实数解.其中正确结论的个数是()A. B. C. D.9.抛物线先向下平移1个单位,再向左平移2个单位,所得的抛物线是()A.. B.C. D.10.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,把小圆形场地的半径增加5米得到大圆形场地,场地面积扩大了一倍.则小圆形场地的半径是______米.12.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.13.在半径为的圆中,的圆心角所对的弧长是__________.14.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是_____________.15.在一个不透明的袋子中有5个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球不放回,混合均匀后再摸出一个球,两次都摸到红球的概率是________.16.如图,在平面直角坐标系中,,P是经过O,A,B三点的圆上的一个动点(P与O,B两点不重合),则__________°,__________°.17.如图,在中,,于点,,,则_________;18.若反比例函数的图象经过点(2,﹣2),(m,1),则m=_____.三、解答题(共66分)19.(10分)已知关于x的一元二次方程mx2+2mx+m﹣4=0;(1)若该方程没有实数根,求m的取值范围.(2)怎样平移函数y=mx2+2mx+m﹣4的图象,可以得到函数y=mx2的图象?20.(6分)甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法画树状图或列表的方法求取出的两个小球上的数字之和为5的概率.21.(6分)如图,A,B,C三点的坐标分别为A(1,0),B(4,3),C(5,0),试在原图上画出以点A为位似中心,把△ABC各边长缩小为原来的一半的图形,并写出各顶点的坐标.22.(8分)如图,在△ABC中,AB=AC,M为BC的中点,MH⊥AC,垂足为H.(1)求证:;(2)若AB=AC=10,BC=1.求CH的长.23.(8分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=°时,四边形BFDE是正方形.24.(8分)解方程:2(x-3)2=x2-925.(10分)为了解九年级学生的体能状况,从我县某校九年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题;(1)求本次测试共调查了多少名学生?并在答题卡上补全条形统计图;(2)经测试,全年级有4名学生体能特别好,其中有1名女生,学校准备从这4名学生中任选两名参加运动会,请用列表或画树状图的方法求出女生被选中的概率.26.(10分)已知抛物线与x轴分别交于,两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设,当k为何值时,.②如图2,以A,F,O为顶点的三角形是否与相似?若相似,求出点F的坐标;若不相似,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】由四边形ABCD是平行四边形,可得AD∥BE,由平行得相似,即△BEF∽△DAF,再利用相似比解答本题.【详解】∵,
∴,∵四边形是平行四边形,
∴,∥,
∴,,
∴,,故选:C.【点睛】本题考查了相似三角形的判定与性质.正确运用相似三角形的相似比是解题的关键.2、C【分析】先求出点B的坐标,再根据旋转图形的性质求得点的坐标【详解】由题意,关于轴的对称点的坐标为(-1,-4),如图所示,点绕原点逆时针旋转得到,过点B’作x轴的垂线,垂足为点C则OC=4,B’C=1,所以点B’的坐标为故答案选:C.【点睛】本题考查平面直角坐标系内图形的旋转,把握旋转图形的性质是解题的关键.3、B【分析】根据概率的求解方法逐一进行求解即可得.【详解】A.无论一颗质地均匀的骰子多少次,每次抛掷出5点的概率都是,故A错误;B.抛掷一枚图钉,因为图钉质地不均匀,钉尖触地和钉尖朝上的概率不相等,故B正确;C.明天降雨的概率是80%,表示明天有80%的可能性降雨,故C错误D.某种彩票中奖的概率是1%,表明中奖的概率为1%,故D错误故答案为:B.【点睛】本题考查了对概率定义的理解,熟练掌握是解题的关键.4、B【分析】利用二次函数图象的平移规律,左加右减,上加下减,进而得出答案.【详解】将抛物线y=x2﹣2向右平移3个单位长度,得到平移后解析式为:y=(x﹣3)2﹣2,∴再向上平移2个单位长度所得的抛物线解析式为:y=(x﹣3)2﹣2+2,即y=(x﹣3)2;故选:B.【点睛】考核知识点:二次函数图象.理解性质是关键.5、C【分析】根据三角形外接圆圆心的确定方法,结合垂直平分线的性质,即可求得.【详解】已知⊙O是△ABC的外接圆,那么点O一定是△ABC的三边的垂直平分线的交点,故选:C.【点睛】本题考查三角形外接圆圆心的确定,属基础题.6、A【解析】利用二次函数的性质可求出抛物线的顶点坐标,此题得解(利用配方法找出顶点坐标亦可).【详解】∵a=3,b=﹣6,c=4,∴抛物线的顶点坐标为(),即(1,1).故选A.【点睛】本题考查了二次函数的性质,牢记“二次函数y=ax2+bx+c(a≠0)的顶点坐标是()”是解题的关键.7、B【详解】解:∵∠C=90°,∴AB2=AC2+BC2,而AC=9,BC=12,∴AB==1.又∵AB是Rt△ABC的外接圆的直径,∴其外接圆的半径为7.2.故选B.8、C【分析】利用二次函数的性质一一进行判断即可得出答案.【详解】解:①抛物线(其中是常数,)顶点坐标为,,,,∴c>>0.故①小题结论正确;②顶点坐标为,点关于抛物线的对称轴的对称点为点与在该抛物线上,,,,当时,随的增大而增大,故此小题结论正确;③把顶点坐标代入抛物线中,得,一元二次方程中,,关于的一元二次方程无实数解.故此小题错误.故选:C.【点睛】本题是一道关于二次函数的综合性题目,具有一定的难度,需要学生熟练掌握二次函数的性质并能够熟练运用.9、A【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.【详解】由“上加下减”的原则可知,将抛物线y=3x2先向向下平移1个单位可得到抛物线y=3x2-1;
由“左加右减”的原则可知,将抛物线y=3x2-1先向左平移2个单位可得到抛物线.
故选A.【点睛】本题考查二次函数图象与几何变换,解题的关键是掌握函数图象平移的法则“左加右减,上加下减”的原则.10、D【分析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的长为,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=故选:D.【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.二、填空题(每小题3分,共24分)11、【分析】根据等量关系“大圆的面积=2×小圆的面积”可以列出方程.【详解】设小圆的半径为xm,则大圆的半径为(x+5)m,根据题意得:π(x+5)2=2πx2,解得,x=5+5或x=5-5(不合题意,舍去).故答案为5+5.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.12、y=x1+1【解析】分析:先确定二次函数y=x1﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x1﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,1),所以平移后的抛物线解析式为y=x1+1.故答案为y=x1+1.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13、【分析】根据弧长公式:即可求出结论.【详解】解:由题意可得:弧长=故答案为:.【点睛】此题考查的是求弧长,掌握弧长公式是解决此题的关键.14、【分析】画树状图展示所有9种等可能的结果数,再找出两人随机同时出手一次,做同样手势的结果数,然后根据概率公式求解.【详解】画树状图为:
共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3,
故两人一起做同样手势的概率是的概率为.故答案为:.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.15、【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.【详解】画树状图图如下:∴一共有20种情况,有6种情况两次都摸到红球,∴两次都摸到红球的概率是.故答案为:.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16、4545或135【分析】易证△OAB是等腰直角三角形,据此即可求得∠OAB的度数,然后分当P在弦OB所对的优弧上和在弦OB所对的劣弧上,两种情况进行讨论,利用圆周角定理求解.【详解】解:∵O(0,0)、A(0,2)、B(2,0),
∴OA=2,OB=2,
∴△OAB是等腰直角三角形.
∴∠OAB=45°,
当P在弦OB所对的优弧上时,∠OPB=∠OAB=45°,
当P在弦OB所对的劣弧上时,∠OPB=180°-∠OAB=135°.
故答案是:45°,45°或135°.【点睛】本题考查了圆周角定理,正确理解应分两种情况进行讨论是关键.17、【分析】根据相似三角形的判定得到△ABC∽△CBD,从而可根据其相似比求得AC的长.【详解】∵,,,∴∠BDC=∠BCA=90°,∠CBD+∠ABC=90°,BC=3,∴△ABC∽△CBD,
∴AC:CD=CB:BD,即AC:=3:2,∴AC=.
故答案为:.【点睛】本题考查相似三角形的判定和性质、勾股定理.18、-1【分析】根据反比例函数图象上点的坐标特征解答.【详解】解:设反比例函数的图象为y=,把点(2,﹣2)代入得k=﹣1,则反比例函数的图象为y=﹣,把(m,1)代入得m=﹣1.故答案为﹣1.【点睛】本题考查反比例函数图象的性质,关键在于熟记性质.三、解答题(共66分)19、(1)m<0;(1)向右平移1个单位长度,再向上平移4个单位长度.【分析】(1)根据关于x的一元二次方程mx1+1mx+m﹣4=0没有实数根,可以得到关于m的不等式组,从而可以求得m的取值范围;(1)先将函数y=mx1+1mx+m﹣4化为顶点式,再根据平移的性质可以得到函数y=mx1.【详解】(1)∵关于x的一元二次方程mx1+1mx+m﹣4=0没有实数根,∴,解得,m<0,即m的取值范围是m<0;(1)∵函数y=mx1+1mx+m﹣4=m(x+1)1﹣4,∴函数y=mx1+1mx+m﹣4的图象向右平移一个单位长度,在向上平移4个单位长度即可得到函数y=mx1的图象.【点睛】本题考查了一元二次方程的问题,掌握根的判别式、一元二次方程的性质以及图象是解题的关键.20、【解析】用树状图列举出所有情况,看两个小球上的数字之和为5的情况数占总情况数的多少即可.【详解】解:树状图如下:共有6种等可能的结果,.21、各顶点坐标分别为A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″(-0.5,-1.5),C″(-1,0).【解析】根据题意,分别从AB,AC上截取它的一半找到对应点即可.【详解】如答图所示,△AB′C′,△AB″C″即是所求的三角形(画出一种即可).各顶点坐标分别为A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″(-0.5,-1.5),C″(-1,0).【点睛】本题考查了画位似图形.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.22、(1)详见解析;(2)3.2【分析】(1)证明,利用线段比例关系可得;(2)利用等腰三角形三线合一和勾股定理求出AM的长,再由(1)中关系式可得AH长度,可得CH的长.【详解】解:(1)证明:∵,为的中点,∴∴∵∴∴∴∴∴(2)解:∵,,M为的中点,∴,在中,,由(1)得∴.【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰三角形三线合一的性质,解题的关键是利用相似三角形得到线段比例关系.23、(1)证明见试题解析;(2)1.【分析】(1)先证∠BAE=∠BCF,又由BA=BC,AE=CF,得到△BAE≌△BCF;(2)由已知可得四边形BFDE对角线互相垂直平分,只要∠EBF=90°即得四边形BFDE是正方形,由△BAE≌△BCF可知∠EBA=∠FBC,又由∠ABC=50°,可得∠EBA+∠FBC=40°,于是∠EBA=×40°=1°.【详解】解:(1)∵菱形ABCD的对角线AC,BD相交于点O,∴AB=BC,∠BAC=∠BCA,∴∠BAE=∠BCF,在△BAE与△BCF中,∵BA=BC,∠BAE=∠BCF,AE=CF,∴△BAE≌△BCF(SAS);(2)∵四边形BFDE对角线互相垂直平分,∴只要∠EBF=90°即得四边形BFDE是正方形,∵△BAE≌△BCF,∴∠EBA=∠FBC,又∵∠ABC=50°,∴∠EBA+∠FBC=40°,∴∠EBA=×40°=1°.故答案为1.【点睛】本题考查菱形的性质;全等三角形的判定与性质;正方形的判定.24、x1=3,x2=1【分析】根据平方差公式将等号右边因式分解,再移项并提取公因式,利用因式分解法即可求解.【详解】解:2(x-3)2=x2-12(x-3)2-(x+3)(x-3)=0(x-3)(2x-6-x-3)=0x1=3,x2=1.【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键.25、(1)共调查了50名学生,补图见解析;(2).【分析】(1)设本次测试共调查了名学生,根据总体、个体、百分比之间的关系列出方程即可解决.用总数减去、、中的人数,即可解决,画出条形图即可.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无线电罗盘创新创业项目商业计划书
- 坚果采摘体验园创新创业项目商业计划书
- 海鱼保健品创新创业项目商业计划书
- 家庭防水补漏服务创新创业项目商业计划书
- 铁索桥施工方案
- 2025年无人店防盗系统在智能零售领域的创新应用策略
- 2025年5G技术的智能农业应用
- 内墙粉刷施工方案图文
- 2025年口腔执业医师考试冲刺试题(附答案)
- 2025年建筑电工(建筑特殊工种)试题及解析
- 陕西水资源论证报告表
- 大学生暑期社会实践登记表
- 单选题51-100试题含答案
- 最新苏教牛津译林版英语五年级上册Unit 4《Hobbies》Grammar time 公开课课件
- 危险品管理台帐
- 现场技术服务报告模版
- 一年级上《人与自然》
- 高等有机化学PPT精品课程课件全册课件汇总
- 教学课件·固体物理基础(第2版)
- 完整课件-西方经济学下册(第二版)
- 青岛版四年级科学新教材上册实验
评论
0/150
提交评论