




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知反比例函数y=的图象经过P(﹣2,6),则这个函数的图象位于()A.第二,三象限 B.第一,三象限C.第三,四象限 D.第二,四象限2.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是()年龄1314151617人数12231A.16,15 B.16,14 C.15,15 D.14,153.关于x的一元二次方程x2+mx﹣1=0的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.不能确定4.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是()A. B. C. D.5.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(℃)与时间(时)之间的关系如图所示.若y(℃)表示0时到t时内骆驼体温的温差(即0时到t时最高温度与最低温度的差).则y与t之间的函数关系用图象表示,大致正确的是()A. B. C. D.6.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码3536373839平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数7.一元二次方程x2+x﹣1=0的两根分别为x1,x2,则=()A. B.1 C. D.8.若反比例函数y=的图象经过点(2,﹣6),则k的值为()A.﹣12 B.12 C.﹣3 D.39.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个 B.2个 C.3个 D.4个10.如图,已知矩形的面积是,它的对角线与双曲线图象交于点,且,则值是()A. B. C. D.11.我市参加教师资格考试的人数逐年增加,据有关部门统计,2017年约为10万人次,2019年约为18.8万人次,设考试人数年均增长率为x,则下列方程中正确的是A.10(1+2x)=18.8 B.=10C.=18.8 D.=18.812.在皮影戏的表演中,要使银幕上的投影放大,下列做法中正确的是()A.把投影灯向银幕的相反方向移动 B.把剪影向投影灯方向移动C.把剪影向银幕方向移动 D.把银幕向投影灯方向移动二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.14.一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角为__________.15.若一个圆锥的侧面积是,侧面展开图是半圆,则该圆锥的底面圆半径是______.16.下表是某种植物的种子在相同条件下发芽率试验的结果.种子个数100400900150025004000发芽种子个数92352818133622513601发芽种子频率0.920.880.910.890.900.90根据上表中的数据,可估计该植物的种子发芽的概率为________.17.如图,AD:DB=AE:EC,若∠ADE=58°,则∠B=_____.18.如果两个相似三角形的对应角平分线之比为2:5,较小三角形面积为8平方米,那么较大三角形的面积为_____________平方米.三、解答题(共78分)19.(8分)一个不透明的口袋里装有分别标有汉字“书”、“香”、“校”、“园”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为多少?(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“书香”的概率.20.(8分)如图,在中,,,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,、同时停止运动,当点不与点、重合时,过点作于点,连接,以、为邻边作.设与重叠部分图形的面积为,点的运动时间为.(1)①的长为______;②的长用含的代数式表示为______;(2)当为矩形时,求的值;(3)当与重叠部分图形为四边形时,求与之间的函数关系式.21.(8分)如图,BD、CE是的高.(1)求证:;(2)若BD=8,AD=6,DE=5,求BC的长.22.(10分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自年起逐月增加,据统计该商城月份销售自行车辆,月份销售了辆.(1)求这个运动商城这两个月的月平均增长率是多少?(2)若该商城前个月的自行车销量的月平均增长率相同,问该商城月份卖出多少辆自行车?23.(10分)如图,在等边△ABC中,AB=6,AD是高.(1)尺规作图:作△ABC的外接圆⊙O(保留作图痕迹,不写作法)(2)在(1)所作的图中,求线段AD,BD与弧所围成的封闭图形的面积.24.(10分)图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC是可伸缩的,其转动点A距离地面BD的高度AE为3.5m.当AC长度为9m,张角∠CAE为112°时,求云梯消防车最高点C距离地面的高度CF.(结果精确到0.1m,参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.1.)25.(12分)如图,在△ABC中,∠C=90°,CB=6,CA=8,将△ABC绕点B顺时针旋转得到△DBE,使点C的对应点E恰好落在AB上,求线段AE的长.26.关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)当m为最大的整数时,解这个一元二次方程.
参考答案一、选择题(每题4分,共48分)1、D【分析】将点P(-2,6)代入反比例函数求出k,若k>0,则函数的图象位于第一,三象限;若k<0,则函数的图象位于第二,四象限;【详解】∵反比例函数的图象经过P(﹣2,6),∴6=,∴k=-12,即k<0,这个函数的图象位于第二、四象限;故选D.【点睛】本题主要考查了反比例函数的图像性质,掌握反比例函数的图像是解题的关键.2、A【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点睛】本题考查了众数及中位数的定义,众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.3、A【解析】计算出方程的判别式为△=m2+4,可知其大于0,可判断出方程根的情况.【详解】方程x2+mx﹣1=0的判别式为△=m2+4>0,所以该方程有两个不相等的实数根,故选:A.【点睛】此题主要考查根的判别式,解题的关键是求出方程根的判别式进行判断.4、C【解析】试题解析:C.两组边对应成比例及其夹角相等,两三角形相似.必须是夹角,但是不一定等于故选C.点睛:三角形相似的判定方法:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两三角形相似.三边的比相等,两三角形相似.5、A【分析】选取4时和8时的温度,求解温度差,用排除法可得出选项.【详解】由图形可知,骆驼0时温度为:37摄氏度,4时温度为:35℃,8时温度为:37℃∴当t=4时,y=37-35=2当t=8时,y=37-35=2即在t、y的函数图像中,t=4对应的y为2,t=8对应的y为2满足条件的只有A选项故选:A【点睛】本题考查函数的图像,解题关键是根据函数的意义,确定函数图像关键点处的数值.6、C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7、B【解析】根据根与系数的关系得到x1+x2=-1,x1•x2=-1,然后把进行通分,再利用整体代入的方法进行计算.【详解】根据题意得x1+x2=-1,x1•x2=-1,所以==1,故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.8、A【解析】试题分析:∵反比例函数的图象经过点(2,﹣6),∴,解得k=﹣1.故选A.考点:反比例函数图象上点的坐标特征.9、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选C.10、D【分析】过点D作DE∥AB交AO于点E,通过平行线分线段成比例求出的长度,从而确定点D的坐标,代入到解析式中得到k的值,最后利用矩形的面积即可得出答案.【详解】过点D作DE∥AB交AO于点E∵DE∥AB∴∵∴∴∴∵点D在上∴∵∴故选D【点睛】本题主要考查平行线分线段成比例及反比例函数,掌握平行线分线段成比例是解题的关键.11、C【分析】根据增长率的计算公式:增长前的数量×(1+增长率)增长次数=增长后数量,从而得出答案.【详解】根据题意可得方程为:10(1+x)2=18.8,故选:C.【点睛】本题主要考查的是一元二次方程的应用,属于基础题型.解决这个问题的关键就是明确基本的计算公式.12、B【分析】根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,据此分析判断即可.【详解】解:根据中心投影的特点可知,如图,当投影灯接近银幕时,投影会越来越大;相反当投影灯远离银幕时,投影会越来越小,故A错误;当剪影越接近银幕时,投影会越来越小;相反当剪影远离银幕时,投影会越来越大,故B正确,C错误;当银幕接近投影灯时,投影会越来越小;当银幕远离投影灯时,投影会越来越大,故D错误.
故选:B.【点睛】此题主要考查了中心投影的特点,熟练掌握中心投影的原理和特点是解题的关键.二、填空题(每题4分,共24分)13、2α【解析】分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋转的性质可得:CB=CD,根据等边对等角的性质可得∠CDB=∠B=90°﹣α,然后由三角形内角和定理,求得答案:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α.由旋转的性质可得:CB=CD,∴∠CDB=∠B=90°﹣α.∴∠BCD=180°﹣∠B﹣∠CDB=2α,即旋转角的大小为2α.14、120【分析】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.根据面积关系可得.【详解】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R=3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=解得n=120°.故答案为:120°.【点睛】考核知识点:圆锥侧面积问题.熟记弧长和扇形面积公式是关键.15、1.【解析】试题解析:设圆锥的母线长为R,解得:R=6,∴圆锥侧面展开图的弧长为:6π,∴圆锥的底面圆半径是6π÷2π=1.故答案为1.16、0.1【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.1左右,从而得到结论.【详解】由表格可得,当实验次数越来越多时,发芽种子频率稳定在0.1,符合用频率佔计概率,∴种子发芽概率为0.1.故答案为:0.1.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.17、58°【分析】根据已知条件可证明△ADE∽△ABC,利用相似三角形的性质即可得∠B的度数.【详解】∵AD:DB=AE:EC,∴AD:AB=AE:AC,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,∵∠ADE=58°,∴∠B=58°,故答案为:58°【点睛】本题考查了相似三角形的判定和性质,从相似求两个三角形的相似比到对应角相等.18、1【分析】设较大三角形的面积为x平方米.根据相似三角形面积的比等于相似比的平方列出方程,然后求解即可.【详解】设较大三角形的面积为x平方米.∵两个相似三角形的对应角平分线之比为2:5,∴两个相似三角形的相似比是2:5,∴两个相似三角形的面积比是4:25,∴8:x=4:25,解得:x=1.故答案为:1.【点睛】本题考查了相似三角形的性质,相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.三、解答题(共78分)19、(1);(2)【分析】(1)写有“书”的小球只有1个,所以球上的汉字刚好是“书”的概率为;(2)画出树状图,然后找出取出两个球的汉字能组成“书香”的个数,用组成“书香”的个数比总数即为所求的概率.【详解】(1)写有“书”的小球只有1个,所以从中任取一个球,球上的汉字刚好是“书”的概率为;(2)画树状图为:共有12种等可能的结果数,其中取出的两个球上的汉字能组成“书香”的结果数为2,所以P(取出的两个球上的汉字能组成“书香”)【点睛】本题主要考查用树状图或列表法求随机事件的概率,画出树状图是解题的关键,再用所求情况数与总数之比求概率即可.20、(1)①3;②3t;(2);(3)当0<t≤时,S=-3t2+48t;当<t<3,S=t2−14t+1.【分析】(1)①根据勾股定理即可直接计算AB的长;②根据三角函数即可计算出PN;
(2)当▱PQMN为矩形时,由PN⊥AB可知PQ∥AB,根据平行线分线段成比例定理可得,即可计算出t的值.
(3)当▱PQMN与△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.▱PQMN在三角形内部时,Ⅱ.▱PQMN有部分在外边时.由三角函数可计算各图形中的高从而计算面积.【详解】解:(1)在Rt△ABC中,∠C=90°,AC=20,BC=2.
∴AB==3.
∴sin∠CAB=,
由题可知AP=5t,
∴PN=AP•sin∠CAB=5t•=3t.
故答案为:①3;②3t.
(2)当▱PQMN为矩形时,∠NPQ=90°,
∵PN⊥AB,
∴PQ∥AB,
∴,
由题意可知AP=CQ=5t,CP=20-5t,
∴,
解得t=,
即当▱PQMN为矩形时t=.
(3)当▱PQMN△ABC重叠部分图形为四边形时,有两种情况,
Ⅰ.如解图(3)1所示.▱PQMN在三角形内部时.延长QM交AB于G点,
由(1)题可知:cosA=sinB=,cosB=,AP=5t,BQ=2-5t,PN=QM=3t.
∴AN=AP•cosA=4t,BG=BQ•cosB=9-3t,QG=BQ•sinB=12-4t,
∵.▱PQMN在三角形内部时.有0<QM≤QG,
∴0<3t≤12-4t,
∴0<t≤.
∴NG=3-4t-(9-3t)=16-t.
∴当0<t≤时,▱PQMN与△ABC重叠部分图形为▱PQMN,S与t之间的函数关系式为S=PN•NG=3t•(16-t)=-3t2+48t.
Ⅱ.如解图(3)2所示.当0<QG<QM,▱PQMN与△ABC重叠部分图形为梯形PQGN时,
即:0<12-4t<3t,解得:<t<3,
▱PQMN与△ABC重叠部分图形为梯形PQGN的面积S=NG(PN+QG)=(16−t)(3t+12−4t)=t2−14t+1.
综上所述:当0<t≤时,S=-3t2+48t.当<t<3,S=t2−14t+1.【点睛】本题考查了平行四边形的性质、勾股定理、矩形的性质、锐角三角函数等知识,关键是根据题意画出图形,分情况进行讨论,避免出现漏解.21、(1)见解析;(2)BC=.【分析】(1)、是的高,可得,进而可以证明;(2)在中,,,根据勾股定理可得,结合(1),对应边成比例,进而证明,对应边成比例即可求出的长.【详解】解:(1)证明:、是的高,,,;(2)在中,,,根据勾股定理,得,,,,,,,.【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.22、(1)该商城2、3月份的月平均增长率为25%;(2)商城4月份卖出125辆自行车【分析】(1)根据题意列方程求解即可.(2)三月份的销量乘以(1+月平均增长率),即可求出四月份的销量.【详解】解:(1)设该商城2、3月份的月平均增长率为x,根据题意列方程:64(1+x)2=100,解得,x1=-225%(不合题意,舍去),x2=25%.答:该商城2、3月份的月平均增长率为25%.(2)四月份的销量为:100(1+25%)=125(辆)答:商城4月份卖出125辆自行车【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.23、(1)见解析;(2)【分析】(1)作BH⊥AC交AD于O,以O为圆心,OB为半径作⊙O即可.(1)线段AD,BD与所围成的封闭图形的面积=S扇形OAB+S△BOD.【详解】解:(1)如图,⊙O即为所求.(2)∵△ABC是等边三角形,AD⊥BC,BH⊥AC,∴BD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年天津市安定医院招聘笔试真题
- 法学概论的社会责任感与试题及答案结合探讨
- 调整服务流程以满足客户需求计划
- 2024年曲靖市检验检测认证院招聘笔试真题
- 2024年安徽省气象部门事业单位招聘笔试真题
- 艺术节与才艺展示活动计划
- 企业决策中的风险管理与战略评估结合试题及答案
- 2025年软考设计师最强试题及答案指导
- 重视实践经验的2024年高考作文试题及答案
- 材料力学与智能材料健康重点基础知识点
- 2025年四川省成都市青羊区中考二诊化学试题(原卷版+解析版)
- 2025年华侨港澳台生联招考试高考地理试卷试题(含答案详解)
- MSOP(测量标准作业规范)测量SOP
- CRCC认证目录
- 因式分解—完全平方公式
- 2020年精品收藏微型企业创业扶持申请书全套表格
- 战略与战略管理ppt课件
- 《全国英语等级考试》
- GB∕T 12810-2021 实验室玻璃仪器 玻璃量器的容量校准和使用方法
- 基于stm32的两轮自平衡车控制系统设计
- 基于51单片机的仓库管理系统设计和实现机械自动化专业
评论
0/150
提交评论