




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:12.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A. B. C. D.3.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8 B.8 C.4 D.64.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54° B.64° C.27° D.37°5.如图是一个空心圆柱体,其俯视图是()A.B.C.D.6.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4) B.(7,4) C.(6,4) D.(8,3)7.下列运算正确的是()A.a3•a2=a6 B.a﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+48.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm9.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm,圆柱的高BC=6cm,圆锥的高CD=3cm,则这个陀螺的表面积是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm210.一副直角三角板如图放置,其中,,,点F在CB的延长线上若,则等于()A.35° B.25° C.30° D.15°11.下列各式计算正确的是()A. B. C. D.12.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是()A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四边形AFCE是矩形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.14.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是_____.15.若a+b=5,ab=3,则a2+b2=_____.16.因式分解:a3b﹣ab3=_____.17.如图,点A,B,C在⊙O上,∠OBC=18°,则∠A=_______________________.18.如果,那么的结果是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?20.(6分)(1)观察猜想如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为______;(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.21.(6分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈,tan37°≈)22.(8分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:根据以上统计图,解答下列问题:本次接受调查的市民共有人;扇形统计图中,扇形B的圆心角度数是;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.23.(8分)对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点.(1)当直线m的表达式为y=x时,①在点,,中,直线m的平行点是______;②⊙O的半径为,点Q在⊙O上,若点Q为直线m的平行点,求点Q的坐标.(2)点A的坐标为(n,0),⊙A半径等于1,若⊙A上存在直线的平行点,直接写出n的取值范围.24.(10分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为.25.(10分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?26.(12分)如图,在平行四边形ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,点F为BE上一点,连接AF,∠AFE=∠D.(1)求证:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=.求证:AF=BF.27.(12分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.2、D【解析】
先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=1.故选D.【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.3、D【解析】分析:连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故选D.点睛:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.4、C【解析】
由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【详解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故选:C.【点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5、D【解析】
根据从上边看得到的图形是俯视图,可得答案.【详解】该空心圆柱体的俯视图是圆环,如图所示:故选D.【点睛】本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键.6、B【解析】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选C.7、C【解析】
直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A、a3•a2=a5,故A选项错误;B、a﹣2=,故B选项错误;C、3﹣2=,故C选项正确;D、(a+2)(a﹣2)=a2﹣4,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.8、A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质9、C【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:圆锥的计算;几何体的表面积.10、D【解析】
直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【详解】解:由题意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故选D.【点睛】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.11、C【解析】
解:A.2a与2不是同类项,不能合并,故本选项错误;B.应为,故本选项错误;C.,正确;D.应为,故本选项错误.故选C.【点睛】本题考查幂的乘方与积的乘方;同底数幂的乘法.12、D【解析】
依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.【详解】解:∵∠ACD是△ABC的外角,∴∠ACD=∠BAC+∠B,∵CE平分∠DCA,∴∠ACD=2∠ACE,∴2∠ACE=∠BAC+∠B,故A选项正确;∵EF∥BC,CF平分∠BCA,∴∠BCF=∠CFE,∠BCF=∠ACF,∴∠ACF=∠EFC,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B选项正确;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;∵O不一定是AC的中点,∴四边形AECF不一定是平行四边形,∴四边形AFCE不一定是矩形,故D选项错误,故选D.【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】
本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.14、11≤x<1【解析】
根据对于实数x我们规定[x]不大于x最大整数,可得答案.【详解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【点睛】考查了解一元一次不等式组,利用[x]不大于x最大整数得出不等式组是解题关键.15、1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案为1.考点:完全平方公式.16、ab(a+b)(a﹣b)【解析】
先提取公因式ab,然后再利用平方差公式分解即可.【详解】a3b﹣ab3=ab(a2﹣b2)=ab(a+b)(a﹣b),故答案为ab(a+b)(a﹣b).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.17、72°.【解析】
解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=∠BOC=×144°=72°.故答案为72°.【点睛】本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.18、1【解析】
令k,则a=2k,b=3k,代入到原式化简的结果计算即可.【详解】令k,则a=2k,b=3k,∴原式=1.故答案为:1.【点睛】本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、这项工程的规定时间是83天【解析】
依据题意列分式方程即可.【详解】设这项工程的规定时间为x天,根据题意得451解得x=83.检验:当x=83时,3x≠0.所以x=83是原分式方程的解.答:这项工程的规定时间是83天.【点睛】正确理解题意是解题的关键,注意检验.20、(1)BC=BD+CE,(2);(3).【解析】
(1)证明△ADB≌△EAC,根据全等三角形的性质得到BD=AC,EC=AB,即可得到BC、BD、CE之间的数量关系;(2)过D作DE⊥AB,交BA的延长线于E,证明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根据勾股定理即可得到BD的长;(3)过D作DE⊥BC于E,作DF⊥AB于F,证明△CED≌△AFD,根据全等三角形的性质得到CE=AF,ED=DF,设AF=x,DF=y,根据CB=4,AB=2,列出方程组,求出的值,根据勾股定理即可求出BD的长.【详解】解:(1)观察猜想结论:BC=BD+CE,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,设AF=x,DF=y,则,解得:∴BF=2+1=3,DF=3,由勾股定理得:【点睛】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.21、不满足安全要求,理由见解析.【解析】
在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“设计方案不满足安全要求”.【详解】解:施工方提供的设计方案不满足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四边形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的设计方案不满足安全要求.22、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.【解析】
(1)根据D组人数以及百分比计算即可.(2)根据圆心角度数=360°×百分比计算即可.(3)求出A,C两组人数画出条形图即可.(4)利用样本估计总体的思想解决问题即可.【详解】(1)本次接受调查的市民共有:50÷25%=1(人),故答案为1.(2)扇形统计图中,扇形B的圆心角度数=360°×=43.2°;故答案为:43.2°(3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).条形统计图如图所示:(4)15×40%=6(万人).答:估计乘公交车上班的人数为6万人.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)①,;②,,,;(2).【解析】
(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.如图2,当点B在原点下方时,同法可求;(2)如图,直线OE的解析式为,设直线BC//OE交x轴于C,作CD⊥OE于D.设⊙A与直线BC相切于点F,想办法求出点A的坐标,再根据对称性求出左侧点A的坐标即可解决问题;【详解】解:(1)①因为P2、P3到直线y=x的距离为1,所以根据平行点的定义可知,直线m的平行点是,,故答案为,.②解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距离为1的直线.设该直线与x轴交于点A,与y轴交于点B.如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.由直线m的表达式为y=x,可知∠OAB=∠OBA=45°.所以.直线AB与⊙O的交点即为满足条件的点Q.连接,作轴于点N,可知.在中,可求.所以.在中,可求.所以.所以点的坐标为.同理可求点的坐标为.如图2,当点B在原点下方时,可求点的坐标为点的坐标为,综上所述,点Q的坐标为,,,.(2)如图,直线OE的解析式为,设直线BC∥OE交x轴于C,作CD⊥OE于D.当CD=1时,在Rt△COD中,∠COD=60°,∴,设⊙A与直线BC相切于点F,在Rt△ACE中,同法可得,∴,∴,根据对称性可知,当⊙A在y轴左侧时,,观察图象可知满足条件的N的值为:.【点睛】此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.24、(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】
(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.(1)当60°<α≤110°时,如图3中,作∠AB
D′=∠ABD,B
D′=BD,连接CD′,AD′,证明方法类似(1).(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB
D′=∠ABD,B
D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【详解】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情况:当60°<α<110°时,如图3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030抗生素耐药性检测技术进展及市场应用前景预测
- 2025-2030托幼一体化模式政策支持与落地难点调研报告
- 2025-2030户外露营装备消费升级趋势与场景化营销策略咨询报告
- 2025-2030慢性病监测管理系统商业化模式及发展前景分析报告
- 2025-2030律师行业并购重组与规模化发展战略研究报告
- 2025-2030律师行业人才流动与激励机制调研报告
- 2025-2030律师事务所行业服务创新与客户体验研究报告
- 2025-2030律师事务所行业成本控制与运营效率分析报告
- 平顶山从业资格考试题目及答案解析
- 基于多元素掺杂策略的钠离子电池层状氧化物正极材料制备及电化学性能研究
- 农场建设农机合作社实施方案
- 成人高考成考教育理论(专升本)试题及答案指导(2025年)
- 病毒性心肌炎病历模板
- 电工基础教案(完整版)
- 部编版道德与法治六年级上册第四单元《法律保护我们健康成长》课件(共6课时)
- 窗口人员劳务派遣投标方案模板(技术方案)
- 北师大版六年级数学上册-第一单元《圆》复习课件
- 2024年全国执业医师资格证之临床助理医师考试历年考试题(附答案)
- 车辆销户委托书范本
- 供应商质量能力调查表
- 滴灌通白皮书
评论
0/150
提交评论