2022云南省曲靖市富源县墨红中学高二数学理模拟试卷含解析_第1页
2022云南省曲靖市富源县墨红中学高二数学理模拟试卷含解析_第2页
2022云南省曲靖市富源县墨红中学高二数学理模拟试卷含解析_第3页
2022云南省曲靖市富源县墨红中学高二数学理模拟试卷含解析_第4页
2022云南省曲靖市富源县墨红中学高二数学理模拟试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022云南省曲靖市富源县墨红中学高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列函数中,在区间上为增函数的是(

)A.

B.C.

D.参考答案:A考点:函数的单调性.2.锐角三角形中,若,则下列叙述正确的是() ①

④A.①②

B.①④

C.③④

D.①②③参考答案:D略3.显示屏有一排7个小孔,每个小孔可显示0或1,若每次显示其中3个孔,但相邻两孔不能同时显示,则该显示屏能显示信号的种数共有(

)A.

B.

C.

D.参考答案:D4.圆心为(1,1)且过原点的圆的方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=2参考答案:D【考点】圆的标准方程.【分析】利用两点间距离公式求出半径,由此能求出圆的方程.【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.5.设m、n是两条不同的直线,α、β是两个不同的平面,则() A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥β C.若m∥n,n⊥α,则m⊥α D.若m∥α,α⊥β,则m⊥β 参考答案:C【考点】空间中直线与平面之间的位置关系. 【专题】综合题;转化思想;综合法;空间位置关系与距离. 【分析】对4个选项分别进行判断,即可得出结论. 【解答】解:对于A,若m∥α,n∥α,则m∥n,或m,n相交、异面,故不正确; 对于B,若m∥α,m∥β,则α∥β或α,β相交,故不正确; 对于C,因为如果两条平行线中有一条和一个平面垂直,则另一条一定和这个平面垂直,故正确; 对于D,若m∥α,α⊥β,则m、β相交或平行,或m?β,故不正确. 故选:C. 【点评】本题考查的知识点是空间直线与平面位置关系的判断,熟练掌握直线与平面之间位置关系的判定定理,性质定理,及定义和空间特征是解答此类问题的关键. 6.曲线在点(1,2)外的切线方程是(

)A.

B.

C.

D.参考答案:A7.一个空间几何体的正视图和侧视图都是边长相等的正方形,俯视图是一个圆,那么这个几何体是(

).

A.棱柱

B.圆柱

C.圆台

D.圆锥参考答案:B8.复数z=在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:B【考点】A4:复数的代数表示法及其几何意义.【分析】将复数化简整理,得z=﹣+i,由此不难得到它在复平面内对应的点,得到点所在的象限.【解答】解:==﹣+i∴复数在复平面内对应的点为Z(﹣,),为第二象限内的点故选B9.如图所示是人教A版选修1-2第二章《推理与证明》的知识结构图(部分),如果要加入知识点“三段论”,那么应该放在图中A.“①”处 B.“②”处C.“③”处 D.“④”处参考答案:B试题分析:首先对所画结构的每一部分有一个深刻的理解,从头到尾抓住主要脉络进行分解.然后将每一部分进行归纳与提炼,形成一个个知识点并逐一写在矩形框内,最后按其内在的逻辑顺序将它们排列起来并用线段相连,分析法是直接证明的一种方法,从而可得结论.解:分析法是直接证明的一种方法故“分析法”,则应该放在“直接证明”的下位.故选C.点评:本题主要考查了结构图,解题关键是弄清分析法属于直接证明,属于基础题.10.知函数()A.-1

B.

C.

D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知实数满足组,目标函数仅在点处取到最小值,则实数的取值范围是____________;参考答案:略12.与双曲线有共同的渐近线,且过点(﹣,2)的双曲线的标准方程是.参考答案:

【考点】双曲线的简单性质.【分析】设出双曲线方程,利用双曲线经过的点,代入求解即可.【解答】解:与双曲线有共同的渐近线,可设双曲线方程为:,双曲线过点,可得,即m=﹣,所求双曲线方程为:.故答案为:.【点评】本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.13.已知数列{an}的前n项和Sn=n3﹣n2,则a10=.参考答案:252考点:数列的函数特性专题:函数的性质及应用.分析:直接利用已知条件求出a10=S10﹣S9的结果即可.解答:解:数列{an}的前n项和Sn=n3﹣n2,则a10=S10﹣S9=103﹣102﹣(93﹣92)=252.故答案为:252.点评:本题考查数列的函数的特征,基本知识的考查14.在极坐标系中,直线l的方程为,则点到直线l的距离为

参考答案:315.已知某地连续5天的最低气温(单位:摄氏度)依次是18,21,22,24,25,那么这组数据的方差为_________.参考答案:6.【分析】先求均值,再根据方差公式求结果.【详解】16.设中心在原点的椭圆与双曲线有公共焦点,且它们的离心率互为倒数,

则该椭圆的方程为_________.参考答案:17.若函数在(0,+∞)上单调递增,则实数a的最小值是__________.参考答案:【分析】由函数单调递增可得导函数在区间内大于等于零恒成立,根据分离变量的方式得到在上恒成立,利用二次函数的性质求得的最大值,进而得到结果.【详解】函数在上单调递增在上恒成立

在上恒成立令,根据二次函数的性质可知:当时,,故实数的最小值是本题正确结果:【点睛】本题考查根据函数在区间内的单调性求解参数范围的问题,关键是能将问题转化为导函数的符号的问题,通过分离变量的方式将问题转变为参数与函数最值之间的关系问题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(Ⅰ)证明:平面PQC⊥平面DCQ(Ⅱ)求二面角Q﹣BP﹣C的余弦值.参考答案:【考点】MJ:与二面角有关的立体几何综合题;LY:平面与平面垂直的判定;MN:向量语言表述面面的垂直、平行关系;MR:用空间向量求平面间的夹角.【分析】首先根据题意以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;(Ⅰ)根据坐标系,求出、、的坐标,由向量积的运算易得?=0,?=0;进而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得证明;(Ⅱ)依题意结合坐标系,可得B、、的坐标,进而求出平面的PBC的法向量与平面PBQ法向量,进而求出cos<,>,根据二面角与其法向量夹角的关系,可得答案.【解答】解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;(Ⅰ)依题意有Q(1,1,0),C(0,0,1),P(0,2,0);则=(1,1,0),=(0,0,1),=(1,﹣1,0),所以?=0,?=0;即PQ⊥DQ,PQ⊥DC,故PQ⊥平面DCQ,又PQ?平面PQC,所以平面PQC⊥平面DCQ;(Ⅱ)依题意,有B(1,0,1),=(1,0,0),=(﹣1,2,﹣1);设=(x,y,z)是平面的PBC法向量,则即,因此可取=(0,﹣1,﹣2);设是平面PBQ的法向量,则,可取=(1,1,1),所以cos<,>=﹣,故二面角角Q﹣BP﹣C的余弦值为﹣.19.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角的余弦值.参考答案:(1)证明见解析;(2).【分析】(1)利用题意,证得二面角为90°,即可得到平面ACD⊥平面ABC;(2)建立适当的空间直角坐标系,求得两个半平面的法向量,利用向量的夹角公式,即可求解二面角的余弦值。【详解】(1)由题意可得,,从而,又是直角三角形,所以,取AC的中点O,连接DO,BO,则,又由是正三角形,所以,所以是二面角的平面角,在直角中,,又,所以,故,所以平面平面。(2)由题设及(1)可知,,两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,则由题设知,四面体的体积为四面体的体积的,从而到平面的距离为到平面的距离的,即为的中点,得.故,设是平面的法向量,则,即,令,则,即平面的一个法向量,设是平面的法向量,则,可得平面的一个法向量,则,即二面角的余弦值为。【点睛】本题主要考查了二面角的平面角的定义及应用,以及利用空间向量求解二面角的计算,对于立体几何中空间角的计算问题,往往可以利用空间向量法求解,通过求解平面的法向量,利用向量的夹角公式得以求解,同时解答中要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算。20.把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求ξ的分布列.

参考答案:解:ξ的所有可能取值为0,1,2,3.

………1分每个球投入到每个盒子的可能性是相等的.总的投球方法数为.

空盒子的个数为0时,此时投球方法数为A=4!,∴P(ξ=0)===;空盒子的个数为1时,此时投球方法数为CCA,∴P(ξ=1)==.同理可得P(ξ=2)==,P(ξ=3)==.

………10分∴ξ的分布列为ξ0123P……12分略21.为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:

患病未患病总计没服用药203050服用药50总计100

设从没服用药的动物中任取两只,未患病数为;从服用药物的动物中任取两只,未患病数为,工作人员曾计算过.(1)求出列联表中数据的值;(2)能够以99%的把握认为药物有效吗?参考公式:,其中;①当K2≥3.841时有95%的把握认为、有关联;②当K2≥6.635时有99%的把握认为、有关联.参考答案:(1)……………………6分(2)故不能够有99%的把握认为药物有效………12分略22.某中学高中毕业班的三名同学甲、乙、丙参加某大学的自主招生考核,在本次考核中只有合格和优秀两个等次.若考核为合格,则给予10分的降分资格;若考核为优秀,则给予20分的降分资格.假设甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.(1)求在这次考核中,甲、乙、丙三名同学中至少有一名考核为优秀的概率;(2)记在这次考核中,甲、乙、丙三名同学所得降分之和为随机变量X,请写出X所有可能的取值,并求的值.参考答案:(1);(2)X所有可能的取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论