




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市城关中学2022年高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若关于的方程=0在上有解,则的取值范围是
(
)A.
B.
C.
D.
参考答案:D略2.已知,若A,B,C三点共线,则实数k的值为()A.4 B.﹣4 C. D.参考答案:C【考点】平行向量与共线向量.【分析】由题意可得与共线,进而可得4k﹣1×(﹣1)=0,解之即可.【解答】解:∵A,B,C三点共线,∴与共线又∵,∴4k﹣1×(﹣1)=0,解得k=故选C3.若m是函数的零点,则m在以下哪个区间(▲)A.[0,1]
B.
C.
D.[2,3]参考答案:C4.已知m,n是两条直线,是两个平面,则下列命题中正确的是(
)A.
B.C.
D.参考答案:DA不正确,因为n可能在平面内;B两条直线可以不平行;C当m在平面内时,n此时也可以在平面内。故选项不对。D正确,垂直于同一条直线的两个平面是平行的。故答案为:D。
5.已知函数是定义在上的奇函数,若对于任意给定的不等实数、,不等式恒成立,则不等式的解集为A.
B.
C.
D.参考答案:A6.从装有2个红球和2个白球的袋内任取2个球,则互斥而不对立的两个事件是()A.至少有1个红球和全是白球B.至少有1个白球和全是白球C.恰有1个白球和恰有两个白球D.至少有1个白球和全是红球参考答案:C7.(5分)若函数y=Asin(ωx+φ),(A>0,ω>0,|φ|<在一个周期内的图象如图所示,M,N分别是这段图象的最高点和最低点,且?(O为坐标原点),则A=() A. B. C. D. 参考答案:B考点: 由y=Asin(ωx+φ)的部分图象确定其解析式;平面向量数量积的含义与物理意义.专题: 计算题;数形结合.分析: 根据图象求出函数的周期,再求出ω的值,根据周期设出M和N的坐标,利用向量的坐标运算求出A的值.解答: 由图得,T=4×=π,则?=2,设M(,A),则N(,﹣A),∵,A>0,∴×﹣A×A=0,解得A=,故选B.点评: 本题考查了由函数图象求出函数解析式的方法,考查向量的数量积的计算,考查了读图能力.8.如图所示,在直三棱柱ABC﹣A1B1C1中,BC=AC,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1,②A1B⊥NB1,③平面AMC1∥平面CNB1,其中正确结论的个数为() A.0 B.1 C.2 D.3参考答案:D【考点】棱柱的结构特征. 【专题】空间位置关系与距离. 【分析】在①中,由已知推导出C1M⊥AA1,C1M⊥A1B1,从而得到C1M⊥平面A1ABB1;在②中,由已知推导出A1B⊥平面AC1M,从而A1B⊥AM,由ANB1M,得AM∥B1N,进而得到A1B⊥NB1;在③中,由AM∥B1N,C1M∥CN,得到平面AMC1∥平面CNB1. 【解答】解:在①中:∵在直三棱柱ABC﹣A1B1C1中,AA1⊥平面A1B1C1,C1M?平面A1B1C1, ∴C1M⊥AA1, ∵B1C1=A1C1,M是A1B1的中点, ∴C1M⊥A1B1,AA1∩A1B1=A1,∴C1M⊥平面A1ABB1,故①正确; 在②中:∵C1M⊥平面A1ABB1,∴CN⊥平面A1ABB1,A1B?平面A1ABB1, ∴A1B⊥CN,A1B⊥C1M, ∵AC1⊥A1B,AC1∩C1M=C1,∴A1B⊥平面AC1M,AM?面AC1M, ∴A1B⊥AM, ∵ANB1M,∴AM∥B1N, ∴A1B⊥NB1,故②正确; 在③中:∵AM∥B1N,C1M∥CN,AM∩C1M=M,B1N∩CN=N, ∴平面AMC1∥平面CNB1,故③正确. 故选:D. 【点评】本题考查命题真假的判断,是中档题,解题时要注意空间中线线、线面、面面间的位置关系的合理运用. 9.(5分)已知幂函数f(x)的图象经过点(2,8),则f(﹣)的值等于() A. ﹣ B. C. ﹣8 D. 8参考答案:A考点: 幂函数的概念、解析式、定义域、值域.专题: 函数的性质及应用.分析: 根据幂函数f(x)的图象经过点(2,8),求出函数的解析式,再计算f(﹣)即可.解答: 设幂函数f(x)=xα(α∈R),其图象经过点(2,8),∴2α=8,解得α=3;∴f(x)=x3,∴f(﹣)==﹣.故选:A.点评: 本题考查了求幂函数的解析式以及利用函数解析式求函数值的问题,是基础题目.10.要得到函数的图象,只需将函数的图象(
)A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度参考答案:B【分析】由,根据函数的图像变换规律可得解.【详解】要得到函数的图象.只需将函数的图象向左平移个单位长度.故选B.【点睛】本题主要考查了三角函数的图像平移,解决此类问题应注意对函数图像平移的影响.二、填空题:本大题共7小题,每小题4分,共28分11.关于x的不等式ax2﹣|x+1|+3a≥0的解集为(﹣∞,+∞),则实数a的取值范围是.参考答案:[,+∞)【考点】其他不等式的解法.【分析】将不等式恒成立进行参数分类得到a≥,利用换元法将不等式转化为基本不等式的性质,根据基本不等式的性质求出的最大值即可得到结论.【解答】解:不等式ax2﹣|x+1|+3a≥0,则a(x2+3)≥|x+1|,即a≥,设t=x+1,则x=t﹣1,则不等式a≥等价为a≥==>0即a>0,设f(t)=,当|t|=0,即x=﹣1时,不等式等价为a+3a=4a≥0,此时满足条件,当t>0,f(t)==,当且仅当t=,即t=2,即x=1时取等号.当t<0,f(t)==≤,当且仅当﹣t=﹣,∴t=﹣2,即x=﹣3时取等号.∴当x=1,即t=2时,fmax(t)==,∴要使a≥恒成立,则a,方法2:由不等式ax2﹣|x+1|+3a≥0,则a(x2+3)≥|x+1|,∴要使不等式的解集是(﹣∞,+∞),则a>0,作出y=a(x2+3)和y=|x+1|的图象,由图象知只要当x>﹣1时,直线y═|x+1|=x+1与y=a(x2+3)相切或相离即可,此时不等式ax2﹣|x+1|+3a≥0等价为不等式ax2﹣x﹣1+3a≥0,对应的判别式△=1﹣4a(3a﹣1)≤0,即﹣12a2+4a+1≤0,即12a2﹣4a﹣1≥0,(2a﹣1)(6a+1)≥0,解得a≥或a≤﹣(舍),故答案为:[,+∞)12.若点C在以P为圆心,6为半径的弧(包括A、B两点)上,,且,则的取值范围为
.参考答案:以点P为圆心建立如图所示的平面直角坐标系.由题意得,设,则点C的坐标为.∵,∴,∴,解得,∴,其中,∵,∴,∴.∴的取值范围为.
13.若将函数y=sin(2x+)的图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个长度单位,则所得的函数图象对应的解析式为___.参考答案:14.如图所示是一算法的伪代码,执行此算法时,输出的结果是
.参考答案:315.化简的结果是(
)A.
B.C.
D.参考答案:C略16.函数是定义在上的增函数,其中且,已知无零点,设函数,则对于有以下四个说法:①定义域是;②是偶函数;③最小值是0;④在定义域内单调递增.其中正确的有____________(填入你认为正确的所有序号)k&s#5u参考答案:①②略17.若正实数a,b满足,则ab的最大值为__________.参考答案:【分析】可利用基本不等式求的最大值.【详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年.已知房屋外表喷一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用H(万元)与隔热层厚度x(毫米)满足关系:.设为隔热层建造费用与20年的能源消耗费用之和.(1)请解释的实际意义,并求的表达式;(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用最少?并求此时与不建隔热层相比较,业主可节省多少钱?参考答案:(1)(2)90【分析】(1)将建造费用和能源消耗费用相加得出f(x)的解析式;(2)利用基本不等式得出f(x)的最小值及对应的x的值,与不使用隔热材料的总费用比较得出结论.【详解】解:(1)表示不喷涂隔热材料时该房屋能源消耗费用为每年8万元,设隔热层建造厚度为毫米,则,(2)当,即时取等号所以当隔热层厚度为时总费用最小万元,如果不建隔热层,年业主将付能源费万元,所以业主节省万元.【点睛】本题考查了函数解析式的求解,函数最值的计算,考查分析问题解决问题的能力,属于中档题.19.已知函数的定义域为,求实数的取值范围.参考答案:【分析】将问题转化为对恒成立;分别在和两种情况下,结合二次函数性质可构造不等式组求得结果.【详解】定义域
对恒成立当时,不等式为:,满足题意当时,,解得:综上所述:【点睛】本题考查根据函数定义域为求解参数范围的问题,关键是能够将问题转化为一元二次不等式在实数集上恒成立的问题,易错点是忽略二次项等于零的讨论.20.已知函数的定义域为集合,且集合,集合。(1)求,;(2)若,求实数的取值范围。参考答案:解:(1),-----------2分
=
---------
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 音乐作品创作与发行权转让协议
- 2025年建筑工程法规更新解析试题及答案
- 现代管理学课程安排与内容试题及答案
- 突破难关的建筑工程试题及答案技巧
- 市政学考察的重要性试题及答案分析
- 2024年春九年级历史下册第五单元冷战和美苏对峙的世界5.19亚非拉国家的新发展课后提分训练新人教版
- 2025年行政公文写作考试版图试题及答案
- 2025版合同终止协议书:辞职与解除劳动合同的规范化流程
- 2025借款合同模板2
- 2025私人委托合同范本
- 国开2024年秋《心理健康教育》形考任务1-9答案
- 电力运维管理平台方案设计
- 安全培训管理体系
- 机场地震应急处理与疏散预案
- 南京工业大学《化工废水处理》2022-2023学年第一学期期末试卷
- 《阻燃材料与技术》课件 颜龙 第3、4讲 阻燃基本理论、阻燃剂性能与应用
- 高三第二轮复习之文言翻译(李丽君)省公开课获奖课件市赛课比赛一等奖课件
- 服务礼仪培训课件
- 2024年江苏省盐城市中考语文真题
- 教辅资料进校园审批制度
- 九年级你准备好了吗崔喜利公开课获奖课件百校联赛一等奖课件
评论
0/150
提交评论