四川省成都市泉水镇中学2022年高一数学文期末试卷含解析_第1页
四川省成都市泉水镇中学2022年高一数学文期末试卷含解析_第2页
四川省成都市泉水镇中学2022年高一数学文期末试卷含解析_第3页
四川省成都市泉水镇中学2022年高一数学文期末试卷含解析_第4页
四川省成都市泉水镇中学2022年高一数学文期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市泉水镇中学2022年高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,.则A的取值范围是()A.(0,] B.[,π) C.(0,] D.[,π)参考答案:C【详解】试题分析:由于,根据正弦定理可知,故.又,则的范围为.故本题正确答案为C.考点:三角形中正余弦定理的运用.2.如图,设点P、Q是线段AB的三等分点,若=a,=b,则=

,(用a、b表示)(A)-

(B)

(C)

(D)参考答案:B略3.设全集U=R,集合A={x|x<0},B={x|﹣1<x<1},则图中阴影部分表示的集合为()A.{x|x<﹣1}B.{x|x<1}C.{x|0<x<1}D.{x|﹣1<x<0}参考答案:D4.下列选项正确的是(

)A.若,则B.若,则C.若,则D.若,则参考答案:B【分析】通过逐一判断ABCD选项,得到答案.【详解】对于A选项,若,代入,,故A错误;对于C选项,等价于,故C错误;对于D选项,若,则,故D错误,所以答案选B.【点睛】本题主要考查不等式的相关性质,难度不大.5.在中,是三角形的三内角,若,则该三角形是(

)A.正三角形

B.等腰三角形

C.直角三角形

D.不存在参考答案:C6.下列说法正确的是(

)A.不共面的四点中,其中任意三点不共线B.若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面C.若直线a,b共面,直线a,c共面,则直线b,c共面D.依次首尾相接的四条线段必共面参考答案:A【分析】利用反证法可知正确;直线与直线异面时,不共面,排除;中可为异面直线,排除;中四条线段可构成空间四边形,排除.【详解】选项:若任意三点共线,则由该直线与第四个点可构成一个平面,则与四点不共面矛盾,则任意三点不共线,正确;选项:若三点共线,直线与直线异面,此时不共面,错误;选项:共面,共面,此时可为异面直线,错误;选项:依次首尾相接的四条线段可构成空间四边形,错误.本题正确选项:A【点睛】本题考查空间中点与直线、直线与直线位置关系的判断,属于基础题.7..函数f(x)=cos2x+sinxcosx在区间上的最大值为

()参考答案:D8.为了解某市居民用水情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将数据分成[0,0.5)[0.5,1),…,[4,4.5)9组,绘制了如图所示的频率分布直方图,由图可知,居民月均用水量的众数、中位数的估计值分别为(

A.2.25,2.25

B.2.25,2.02

C.2,2.5

D.2.5,2.25参考答案:B9.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(

)A.

B.

C.

D.参考答案:C是奇函数,在(0,+∞)上单调递减,不满足条件;是偶函数,在(0,+∞)上不单调,不满足条件;是偶函数,在(0,+∞)上单调递减,满足条件;是偶函数,在(0,+∞)上单调递增,不满足条件.

10.对于

函数,则它是周期函数,这类函数的最小正周期是

A.

B.

C.

D.参考答案:D

提示:将代替式中的,则有于是,可得,所以二、填空题:本大题共7小题,每小题4分,共28分11.函数的定义域________.参考答案:.【分析】根据反正弦函数的定义得出,解出可得出所求函数的定义域.【详解】由反正弦的定义可得,解得,因此,函数的定义域为,故答案为:.【点睛】本题考查反正弦函数的定义域,解题的关键就是正弦值域的应用,考查运算求解能力,属于基础题.12.已知数列的前项和,第项满足,则

.参考答案:13.计算:log43?log98=.参考答案:【考点】对数的运算性质;换底公式的应用.【分析】直接利用对数的运算性质,把要求的式子化为

?,即?,运算求得结果.【解答】解:由对数的运算性质可得log43?log98=?=?=,故答案为.14.如图2货轮在海上以35nmile/h的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为152°的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为122°.半小时后,货轮到达C点处,观测到灯塔A的方位角为32°.求此时货轮与灯塔之间的距离.

参考答案:略15.已知函数,其中[x]表示不超过x的最大整数,下列关于f(x)说法正确的有:

.①f(x)的值域为[-1,1]②为奇函数③f(x)为周期函数,且最小正周期T=4④f(x)在[0,2)上为单调增函数⑤f(x)与y=x2的图像有且仅有两个公共点参考答案:

③⑤16.不等式的解集为

参考答案:[-3,2]17.数列中,,(是常数,),且成公比不为的等比数列,则的通项公式是______.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列中,,,通项是项数的一次函数,①求的通项公式,并求;②若是由组成,试归纳的一个通项公式.参考答案:略19.函数是数学中重要的概念之一,同学们在初三、高一分别学习过,也知晓其发展过程.1692年,德国数学家莱布尼茨首次使用function这个词,1734年瑞士数学家欧拉首次使用符号表示函数.1859年我国清代数学家李善兰将function译作函数,“函”意味着信件,巧妙地揭示了对应关系.密码学中的加密和解密其实就是函数与反函数.对自变量恰当地赋值是处理函数问题,尤其是处理抽象函数问题的常用方法之一.请你解答下列问题.已知函数满足:对任意的整数,均有,且.求的值.参考答案:在中,令,得,于是.在中,令,,得.∴,.在中,令,,得.∴.∴,,…….上述等式左右两边分别相加,得.∴.20.已知,其中,如果A∩B=B,求实数的取值范围。参考答案:略21.(12分)已知定义在(﹣∞,﹣1)∪(1,+∞)函数满足:①f(4)=1;②对任意x>2均有f(x)>0;③对任意x>1,y>1,均有f(x)+f(y)=f(xy﹣x﹣y+2).(Ⅰ)求f(2)的值;(Ⅱ)证明:f(x)在(1,+∞)上为增函数;(Ⅲ)是否存在实数k,使得f(sin2θ﹣(k﹣4)(sinθ+cosθ)+k)<2对任意的θ∈恒成立?若存在,求出k的范围;若不存在说明理由.参考答案:考点: 函数恒成立问题;抽象函数及其应用.专题: 函数的性质及应用;三角函数的图像与性质.分析: (Ⅰ)将条件③变形得到f(m+1)+f(n+1)=f(mn+1)对任意m,n>0均成立,其中m=x﹣1,n=y﹣1,令m=n=1,即可解得f(2)=0;(Ⅱ)由(Ⅰ),将f(m+1)+f(n+1)=f(mn+1)变形得f(mn+1)﹣f(n+1)=f(m+1),则要证明f(x)在(1,+∞)上为增函数,只需m>1即可.显然当m>1即m+1>2时f(m+1)>0;(Ⅲ)利用条件①②将问题转化为是否存在实数k使得sin2θ﹣(k﹣4)(sinθ+cosθ)+k<或1<sin2θ﹣(k﹣4)(sinθ+cosθ)+k<10对任意的θ∈恒成立.再令t=sinθ+cosθ,,则问题等价于t2﹣(k﹣4)t+k﹣1<或1<t2﹣(k﹣4)t+k﹣1<10对恒成立.分情况讨论,利用二次函数的性质即可解题.解答: (Ⅰ)由条件③可知f(x)+f(y)=f(xy﹣x﹣y+2)=f=f,令m=x﹣1,n=y﹣1,则由x>1,y>1知m,n>0,并且f(m+1)+f(n+1)=f(mn+1)对任意m,n>0均成立.令m=n=1,即有f(2)+f(2)=f(2),故得f(2)=0.(Ⅱ)由(Ⅰ),将f(m+1)+f(n+1)=f(mn+1)变形得:f(mn+1)﹣f(n+1)=f(m+1),要证明f(x)在(1,+∞)上为增函数,只需m>1即可.设x2=mn+1,x1=n+1,其中m,n>0,m>1,则x2﹣x1=n(m﹣1)>0,故x2>x1,则f(x2)﹣f(x1)=f(mn+1)﹣f(n+1)=f(m+1),m>1,m+1>2,所以f(m+1)>0,即f(x2)﹣f(x1)>0,所以f(x2)>f(x1),即f(x)在(1,+∞)上为增函数;(Ⅲ)∵由f(m+1)+f(n+1)=f(mn+1)对任意m,n>0均成立,及f(4)=1∴令m=n=3,有f(4)+f(4)=f(10),即f(10)=2.令m=9,n=,则f(9+1)+f(+1)=f(9×+1)=f(2),故f()=f(2)﹣f(10)=﹣2,由奇偶性得f(﹣)=﹣2,则f(x)<2的解集是.于是问题等价于是否存在实数k使得sin2θ﹣(k﹣4)(sinθ+cosθ)+k<或1<sin2θ﹣(k﹣4)(sinθ+cosθ)+k<10对任意的θ∈恒成立.令t=sinθ+cosθ,,问题等价于t2﹣(k﹣4)t+k﹣1<或1<t2﹣(k﹣4)t+k﹣1<10对恒成立.令g(t)=t2﹣(k﹣4)t+k﹣1,则g(t)对恒成立的必要条件是,即解得,此时无解;同理1<g(t)<10恒成立的必要条件是,即解得,即;当时,g(t)=t2﹣(k﹣4)t+k﹣1的对称轴.下面分两种情况讨论:(1)当时,对称轴在区间的右侧,此时g(t)=t2﹣(k﹣4)t+k﹣1在区间上单调递减,1<g(t)<10恒成立等价于恒成立,故当时,1<g(t)<10恒成立;(2)当时,对称轴在区间内,此时g(t)=t2﹣(k﹣4)t+k﹣1在区间上先单调递减后单调递增,1<g(t)<10恒成立还需,即,化简为k2﹣12k+24<0,解得,从而,解得;综上所述,存在,使得f(sin2θ﹣(k﹣4)(sinθ+cosθ)+k)<2对任意的θ∈恒成立.点评: 本题考查了抽象函数的运算,单调性,以及函数恒成立问题,需要较强的分析、计算能力,属于难题.22.已知关于x的不等式(kx﹣k2﹣4)(x﹣4)>0,其中k∈R;(1)当k=4时,求上述不等式的解集;(2)当上述不等式的解集为(﹣5,4)时,求k的值.参

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论