2022年广东省广州市数学九年级第一学期期末教学质量检测模拟试题含解析_第1页
2022年广东省广州市数学九年级第一学期期末教学质量检测模拟试题含解析_第2页
2022年广东省广州市数学九年级第一学期期末教学质量检测模拟试题含解析_第3页
2022年广东省广州市数学九年级第一学期期末教学质量检测模拟试题含解析_第4页
2022年广东省广州市数学九年级第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在△ABC中,M,N分别是边AB,AC的中点,则△AMN的面积与四边形MBCN的面积比为A. B. C. D.2.如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为()A.1 B. C.2 D.43.如图,在中,,,点是边上的一个动点,以为直径的圆交于点,若线段长度的最小值是4,则的面积为()A.32 B.36 C.40 D.484.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A. B.2 C.6 D.85.函数中,自变量的取值范围是()A. B. C. D.x≤1或x≠06.若二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(3,0),则方程ax2+bx+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3C.x1=﹣1,x2=3 D.x1=﹣3,x2=17.一组数据10,9,10,12,9的平均数是()A.11 B.12 C.9 D.108.在半径为1的⊙O中,弦AB的长为,则弦AB所对的圆周角的度数为()A.45° B.60° C.45°或135° D.60°或120°9.比较cos10°、cos20°、cos30°、cos40°大小,其中值最大的是()A.cos10° B.cos20° C.cos30° D.cos40°10.某单行道路的路口,只能直行或右转,任意一辆车通过路口时直行或右转的概率相同.有3辆车通过路口.恰好有2辆车直行的概率是()A. B. C. D.11.一个不透明的袋子中装有仅颜色不同的1个红球和3个绿球,从袋子中随机摸出一个小球,记下颜色后,不放回再随机摸出一个小球,则两次摸出的小球恰好是一个红球和一个绿球的概率为()A. B. C. D.12.2018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是().A. B. C. D.二、填空题(每题4分,共24分)13.已知抛物线,那么点P(-3,4)关于该抛物线的对称轴对称的点的坐标是______.14.二次函数的图象与y轴的交点坐标是__.15.如图1,是一建筑物造型的纵截面,曲线是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线,,是与水平线垂直的两根支柱,米,米,米.(1)如图1,为了安全美观,准备拆除支柱、,在水平线上另找一点作为地面上的支撑点,用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_________.(2)如图2,在水平线上增添一张米长的椅子(在右侧),用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_______________.16.某日6时至10时,某交易平台上一种水果的每千克售价、每千克成本与交易时间之间的关系分别如图1、图2所示(图1、图2中的图象分别是线段和抛物线,其中点P是抛物线的顶点).在这段时间内,出售每千克这种水果收益最大的时刻是_____,此时每千克的收益是_________17.如图,点、、…在反比例函数的图象上,点、、……在反比例函数的图象上,,且,则(为正整数)的纵坐标为______.(用含的式子表示)18.如图,⊙O与矩形ABCD的边AB、CD分别相交于点E、F、G、H,若AE+CH=6,则BG+DF为_________.三、解答题(共78分)19.(8分)电影《我和我的祖国》在国庆档热播,预售票房成功破两亿,堪称热度最高的爱国电影,周老师打算从非常渴望观影的5名学生会干部(两男三女)中,抽取两人分别赠送一张的嘉宾观影卷,问抽到一男一女的概率是多少?(请你用树状图或者列表法分析)20.(8分)(1)计算:.(2)用适当方法解方程:(3)用配方法解方程:21.(8分)已知方程是关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程的两个根之和等于两根之积,求的值.22.(10分)如图,抛物线与轴交于两点,与轴交于点,且.直线与抛物线交于两点,与轴交于点,点是抛物线的顶点,设直线上方的抛物线上的动点的横坐标为.(1)求该抛物线的解析式及顶点的坐标.(2)连接,直接写出线段与线段的数量关系和位置关系.(3)连接,当为何值时?(4)在直线上是否存在一点,使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.23.(10分)已知关于x的方程.求证:不论m为何值,方程总有实数根;当m为何整数时,方程有两个不相等的正整数根?24.(10分)如图,在△ABC中,AD是BC边上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sinC=,BC=12,求△ABC的面积.25.(12分)如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0).∠AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF.(1)求该抛物线的解析式;(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.26.如图:反比例函数的图象与一次函数的图象交于、两点,其中点坐标为.(1)求反比例函数与一次函数的表达式;(2)观察图象,直接写出当时,自变量的取值范围;(3)一次函数的图象与轴交于点,点是反比例函数图象上的一个动点,若,求此时点的坐标.

参考答案一、选择题(每题4分,共48分)1、B【详解】解:∵M,N分别是边AB,AC的中点,∴MN是△ABC的中位线,∴MN∥BC,且MN=BC,∴△AMN∽△ABC,∴,∴△AMN的面积与四边形MBCN的面积比为1:1.故选B.【点睛】本题考查了相似三角形的判定与性质,解答本题的关键是得出MN是△ABC的中位线,判断△AMN∽△ABC,要掌握相似三角形的面积比等于相似比平方.2、C【分析】如图,延长FH交AB于点M,由BE=2AE,DF=2FC,G、H分别是AC的三等分点,证明EG//BC,FH//AD,进而证明△AEG∽△ABC,△CFH∽△CAD,进而证明四边形EHFG为平行四边形,再根据平行四边形的面积公式求解即可.【详解】如图,延长FH交AB于点M,∵BE=2AE,DF=2FC,AB=AE+BE,CD=CF+DF,∴AE:AB=1:3,CF:CD=1:3,又∵G、H分别是AC的三等分点,∴AG:AC=CH:AC=1:3,∴AE:AB=AG:AC,CF:CD=CH:CA,∴EG//BC,FH//AD,∴△AEG∽△ABC,△CFH∽△CDA,BM:AB=CF:CD=1:3,∠EMH=∠B,∴EG:BC=AE:AB=1:3,HF:AD=CF:CD=1:3,∵四边形ABCD是矩形,AB=3,BC=6,∴CD=AB=3,AD=BC=6,∠B=90°,∴AE=1,EG=2,CF=1,HF=2,BM=1,∴EM=3-1-1=1,EG=FH,∴EGFH,∴四边形EHFG为平行四边形,∴S四边形EHFG=2×1=2,故选C.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,平行四边形的判定与性质,熟练掌握和灵活运用相关内容是解题的关键.3、D【分析】连接BQ,证得点Q在以BC为直径的⊙O上,当点O、Q、A共线时,AQ最小,在中,利用勾股定理构建方程求得⊙O的半径R,即可解决问题.【详解】如图,连接BQ,∵PB是直径,∴∠BQP=90°,

∴∠BQC=90°,

∴点Q在以BC为直径的⊙O上,∴当点O、Q、A共线时,AQ最小,设⊙O的半径为R,在中,,,,∵,即,解得:,故选:D【点睛】本题考查了圆周角定理,勾股定理,三角形面积公式.解决本题的关键是确定Q点运动的规律,从而把问题转化为圆外一点到圆上一点的最短距离问题.4、B【分析】连接OC,根据垂径定理和勾股定理,即可得答案.【详解】连接OC,

∵AB是⊙O的直径,弦CD⊥AB于点E,AB=8,AE=1,∴,

∴,∴,∴,故选:B.【点睛】本题考查了垂径定理和勾股定理,解题关键是学会添加常用辅助线面构造直角三角形解决问题.5、D【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】根据题意得,且,

解得:且.

故选:D.【点睛】本题考查求函数的自变量的取值范围,函数自变量的范围一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.6、C【分析】利用抛物线与x轴的交点问题确定方程ax2+bx+c=0的解.【详解】解:∵二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(1,0),∴方程ax2+bx+c=0的解为x1=﹣1,x2=1.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.7、D【解析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.8、C【解析】试题分析:如图所示,连接OA、OB,过O作OF⊥AB,则AF=FB,∠AOF=∠FOB,∵OA=3,AB=,∴AF=AB=,∴sin∠AOF=,∴∠AOF=45°,∴∠AOB=2∠AOF=90°,∴∠ADB=∠AOB=45°,∴∠AEB=180°-45°=135°.故选C.考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.9、A【解析】根据同名三角函数大小的比较方法比较即可.【详解】∵,∴.故选:A.【点睛】本题考查了同名三角函数大小的比较方法,熟记锐角的正弦、正切值随角度的增大而增大;锐角的余弦、余切值随角度的增大而减小.10、B【分析】用表示直行、表示右转,画出树状图表示出所有的种等可能的结果,其中恰好有辆车直行占种,然后根据概率公式求解即可.【详解】解:若用表示直行、表示右转,则画树状图如下:∵共有种等可能的结果,其中恰好有辆车直行占种∴(恰好辆车直行).故选:B【点睛】此题考查的是用树状图法求概率.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率等于所求情况数与总情况数之比.11、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球恰好是一个红球和一个绿球的情况,再利用概率公式即可求得答案.【详解】画树状图为:共有12种等可能的结果数,其中两次摸出的小球恰好是一个红球和一个绿球的结果数为6,所以两次摸出的小球恰好是一个红球和一个绿球的概率==.故选A.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.12、D【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.【详解】解:如图所示:一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:,故选D.【点睛】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.二、填空题(每题4分,共24分)13、(1,4).【解析】试题解析:抛物线的对称轴为:点关于该抛物线的对称轴对称的点的坐标是故答案为14、(0,3)【分析】令x=0即可得到图像与y轴的交点坐标.【详解】当x=0时,y=3,∴图象与y轴的交点坐标是(0,3)故答案为:(0,3).【点睛】此题考查二次函数图像与坐标轴的交点坐标,图像与y轴交点的横坐标等于0,与x轴交点的纵坐标等于0,依此列方程求解即可.15、【分析】(1)以点O为原点,OC所在直线为y轴,垂直于OC的直线为x轴建立平面直角坐标系,利用待定系数法确定二次函数的解析式后延长BD到M使MD=BD,连接AM交OC于点P,则点P即为所求;利用待定系数法确定直线M'A'的解析式,从而求得点P′的坐标,从而求得O、P之间的距离;(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.【详解】(1)如图建立平面直角坐标系(以点为原点,所在直线为轴,垂直于的直线为轴),延长到使,连接交于点,则点即为所求.设抛物线的函数解析式为,由题意知旋转后点的坐标为.带入解析式得抛物线的函数解析式为:,当时,,点的坐标为,点的坐标为代入,求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.点的坐标为,点坐标为代入,,的坐标求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中整理出二次函数模型,利用二次函数的知识解决生活中的实际问题.16、9时元【分析】观察图象找出点的坐标,利用待定系数法即可求出关于x的函数关系式,=者做差后,利用二次函数的性质,即可解决最大收益问题.【详解】解:设交易时间为x,售价为,成本为,则设图1、图2的解析式分别为:,依题意得∴解得∴∴出售每千克这种水果收益:∵∴当时,y取得最大值,此时:∴在这段时间内,出售每千克这种水果收益最大的时刻是9时,此时每千克的收益是元故答案为:9时;元【点睛】本题考查了待定系数法求函数解析式、二次函数的性质,解题的关键是:观察函数图象根据点的坐标,利用待定系数法求出关于x的函数关系式.17、【分析】先证明是等边三角形,求出的坐标,作高线,再证明是等边三角形,作高线,设,根据,解方程可得等边三角形的边长和的纵坐标,同理依次得出结论,并总结规律:发现点、、…在轴的上方,纵坐标为正数,点、、……在轴的下方,纵坐标为负数,可以利用来解决这个问题.【详解】过作轴于,∵,,是等边三角形,,,和,过作轴于,∵,是等边三角形,设,则,中,,,∵,解得:(舍),,,,即的纵坐标为;过作轴于,同理得:是等边三角形,设,则,中,,,∵,解得:(舍),;,,即的纵坐标为;…(为正整数)的纵坐标为:;故答案为;【点睛】本题考查了待定系数法求反比例函数解析式,等边三角形的性质和判定,直角三角形度角的性质,勾股定理,反比例函数图象上点的坐标特征,并与方程相结合解决问题.18、6【分析】作EM⊥BC,HN⊥AD,易证得,继而证得,利用等量代换即可求得答案.【详解】过E作EM⊥BC于M,过H作HN⊥AD于N,如图,∵四边形ABCD为矩形,∴AD∥BC,∴,∴,∵四边形ABCD为矩形,且EM⊥BC,HN⊥AD,∴四边形ABME、EMHN、NHCD均为矩形,∴,AE=BM,EN=MH,ND=HC,在和中,∴(HL),∴,∴,故答案为:【点睛】本题考查了矩形的判定和性质、直角三角形的判定和性质、平行弦所夹的弧相等、等弧对等弦等知识,灵活运用等量代换是解题的关键.三、解答题(共78分)19、【分析】列举出所有等情况和抽到一男一女的情况数,再根据概率公式即可得出答案.【详解】设三个女生记为,,,两个男生记为,.列表如下:有且只有以上20种情形,它们发生的机会均等,抽到一男一女有12种情形,∴(一男一女)=【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)3;(2)x1=,x2=;(3)x1=1+,x2=1−.【解析】(1)先根据特殊角的三角函数值、二次根式的性质、零指数幂和绝对值的意义逐项化简,再合并同类二次根式或同类项即可;(2)用直接开平方法求解即可;(3)先把-3移项,再把二次项系数化为1,两边都加1,把左边写成完全平方的形式,两边同时开平方即可.【详解】解:(1)原式=4×-2+1+2=3;(2)(2x-5)2=,2x-5=±,所以x1=,x2=;(3)解:∵2x2-4x-3=0,∴2x2-4x=3,∴x2−2x=,∴x2−2x+1=+1,∴(x−1)2=,∴x-1=±,∴x1=1+,x2=1−.【点睛】本题考查了实数的混合运算,一元二次方程的解法,熟练掌握二次方程的解法是解答本题的关键.21、(1)详见解析;(2)1.【分析】(1)根据一元二次方程根的判别式,即可得到结论;(2)由一元二次方程根与系数的关系,得,,进而得到关于m的方程,即可求解.【详解】(1)∵方程是关于的一元二次方程,∴,∵,∴方程总有两个实根;(2)设方程的两根为,,则,根据题意得:,解得:,(舍去),∴的值为1.【点睛】本题主要考查一元二次方程根的判别式以及根与系数的关系,掌握一元二次方程根的判别式以及根与系数的关系是解题的关键.22、(1),点的坐标为(2)线段与线段平行且相等(3)或1(4)存在;点的坐标为(0,3)或(,2)【分析】(1)直线y=x+1与抛物线交于A点,可得点A和点E坐标,则点B、C的坐标分别为:(3,0)、(0,3),即可求解;(2)CQ==AE,直线AQ和AE的倾斜角均为45°,即可求解;(3)根据题意将△APD的面积和△DAB的面积表示出来,令其相等,即可解出m的值;(4)分∠QOH=90°、∠PQH=90°、∠QHP=90°三种情况,分别求解即可.【详解】解:(1)直线与抛物线交于点,则点、点.∵,∴点的坐标为,故抛物线的表达式为,将点的坐标代入,得,解得,故抛物线的表达式为,函数的对称轴为,故点的坐标为.(2)CQ=AE,且CQ∥AE,理由是:,,∴CQ=AE,直线CQ表达式中的k==1,与直线AE表达式中k相等,故AE∥CQ,

故线段CQ与线段AE的数量关系和位置关系是平行且相等;(3)联立直线与抛物线的表达式,并解得或2.故点.如图1,过点作轴的平行线,交于点,设点,则点.解得或1.(4)存在,理由:设点,点,,而点,①当时,如图2,过点作轴的平行线,分别交过点、点与轴的平行线于点、,,,,,,在△PGQ和△HMP中,,,,,即:,,解得m=2或n=3,当n=3时,解得:或2(舍去),故点P;②当时,如图3,,则点、关于抛物线对称轴对称,即垂直于抛物线的对称轴,而对称轴与轴垂直,故轴,则,可得:△MQP和△NQH都是等腰直角三角形,MQ=MP,∵MQ=1-m,MP=4-n,∴n=3+m,代入,解得:或1(舍去),故点P;③当时,如图4所示,点在下方,与题意不符,故舍去.如图5,P在y轴右侧,同理可得△PHK≌△HQJ,可得QJ=HK,∵QJ=t-1,HK=t+1-n,∴t-1=t+1-n,∴n=2,∴,解得:m=(舍去)或,∴点P(,2)综上,点的坐标为:或(,2)【点睛】本题考查的是二次函数综合运用,难度较大,涉及到一次函数、三角形全等、图形的面积计算等,要注意分类求解,避免遗漏.23、(1)见解析;(2).【解析】计算根的判别式,证明;因式分解求出原方程的两个根,根据m为整数、两个不相等的正整数根得到m的值.【详解】,,,,即,不论m为何值,方程总有实数根.,,,方程有两个不相等的正整数根,.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的解法解决的关键是用因式分解法求出方程的两个根.24、(1)证明见解析;(2)△ABC的面积为42.【分析】(1)在直角三角形中,表示,根据它们相等,即可得出结论(2)利用和勾股定理表示出线段长,根据,求出长【详解】(1)∵AD是BC上的高∴AD⊥BC.∴∠ADB=90°,∠ADC=90°.在Rt△ABD和Rt△ADC中,∵=,=又已知∴=.∴AC=BD.(2)在Rt△ADC中,,故可设AD=1k,AC=13k.∴CD==5k.∵BC=BD+CD,又AC=BD,∴BC=13k+5k=12k由已知BC=1,∴12k=1.∴k=.∴AD=1k=1=2.25、(1)y=x2﹣x+2;(2);(3)不存在点P,使得四边形EHFP为平行四边形,理由见解析.【分析】(1)根据题意可以得到C的坐标,然后根据抛物线过点A、C、D可以求得该抛物线的解析式;(2)根据对称轴和图形可以画出相应的图形,然后找到使得四边形EAMN的周长的取得最小值时的点M和点N即可,然后求出直线MN的解析式,然后直线MN与x轴的交点即可解答本题;(3)根据题意作出合适的图形,然后根据平行四边形的性质可知EH=FP,而通过计算看EH和FP是否相等,即可解答本题.【详解】解:(1)∵AE∥x轴,OE平分∠AOB,∴∠AEO=∠EOB=∠AOE,∴AO=AE,∵A(0,2),∴E(2,2),∴点C(4,2),设二次函数解析式为y=ax2+bx+2,∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论