




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某班抽取6名同学参加体能测试,成绩如下:1,95,1,80,80,1.下列表述错误的是()A.众数是1 B.平均数是1 C.中位数是80 D.极差是152.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=9503.如图,⊙O的圆周角∠A=40°,则∠OBC的度数为()A.80° B.50° C.40° D.30°4.已知二次函数y=-x2+2mx+2,当x<-2时,y的值随x的增大而增大,则实数m()A.m=-2 B.m>-2 C.m≥-2 D.m≤-25.设是方程的两个实数根,则的值为()A.2017 B.2018 C.2019 D.20206.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为()A.25° B.40° C.35° D.30°7.如图,在正方形中,绕点顺时针旋转后与重合,,,则的长度为()A.4 B. C.5 D.8.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由左图中所示的图案平移后得到的图案是()A. B. C. D.9.如图,一个直角梯形的堤坝坡长AB为6米,斜坡AB的坡角为60°,为了改善堤坝的稳固性,准备将其坡角改为45°,则调整后的斜坡AE的长度为()A.3米 B.3米 C.(3﹣2)米 D.(3﹣3)米10.把抛物线y=-x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为()A.y=-(x+1)2+1 B.y=-(x+1)2-1 C.y=-(x-1)2+1 D.y=-(x-1)2-111.如图,小彬收集了三张除正面图案外完全相同的卡片,其中两张印有中国国际进口博览会的标志,另外一张印有进博会吉祥物“进宝”.现将三张卡片背面朝上放置,搅匀后从中一次性随机抽取两张,则抽到的两张卡片图案不相同的概率为()A. B. C. D.12.如图,分别是的边上的点,且,相交于点,若,则的值为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥轴,将正六边形ABCDEF绕原点O顺时针旋转,每次旋转60°,则第2019次后,顶点A的坐标为_______.14.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______.15.的半径是,弦,点为上的一点(不与点、重合),则的度数为______________.16.如图,已知点A,C在反比例函数的图象上,点B,D在反比例函的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=5,CD=4,AB与CD的距离为6,则a−b的值是_______.17.已知:a,b在数轴上的位置如图所示,化简代数式:=_____.18.请写出一个一元二次方程,使它的两个根分别为2,﹣2,这个方程可以是_____.三、解答题(共78分)19.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.20.(8分)解方程:4x2﹣2x﹣1=1.21.(8分)某市某幼儿园“六一”期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏.主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)?(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)22.(10分)如图所示,线段,,,,点为射线上一点,平分交线段于点(不与端点,重合).(1)当为锐角,且时,求四边形的面积;(2)当与相似时,求线段的长;(3)设,,求关于的函数关系式,并写出定义域.23.(10分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.24.(10分)在平面直角坐标系中,已知P(,),R(,)两点,且,,若过点P作轴的平行线,过点R作轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作轴的平行线,过点P作轴的平行线,两平行线交于一点,连接PR,则称△RP为点R,P,的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.(3)若的半径为,点M(,4),若在上存在一点N,使得点N,M,G的“坐标轴三角形”为等腰三角形,求的取值范围.25.(12分)如图,反比例函数y1=与一次函数y2=ax+b的图象交于点A(﹣2,5)和点B(n,l).(1)求反比例函数和一次函数的表达式;(2)请结合图象直接写出当y1≥y2时自变量x的取值范围;(3)点P是y轴上的一个动点,若S△APB=8,求点P的坐标.26.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和极差的定义可分别求出.【详解】解:这组数据中1出现了3次,出现的次数最多,所以这组数据的众数位1;由平均数公式求得这组数据的平均数位1,极差为95-80=15;将这组数据按从大到校的顺序排列,第3,4个数是1,故中位数为1.所以选项C错误.故选C.【点睛】本题考查了统计学中的平均数,众数,中位数与极差的定义.解答这类题学生常常对中位数的计算方法掌握不好而错选.2、D【解析】设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=1.故选D.3、B【分析】然后根据圆周角定理即可得到∠OBC的度数,由OB=OC,得到∠OBC=∠OCB,根据三角形内角和定理计算出∠OBC.【详解】∵∠A=40°.
∴∠BOC=80°,
∵OB=OC,
∴∠OBC=∠OCB=50°,
故选:B.【点睛】本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半;也考查了等腰三角形的性质以及三角形的内角和定理.4、C【解析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线∵,抛物线开口向下,∴当时,y的值随x值的增大而增大,∵当时,y的值随x值的增大而增大,∴,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.5、D【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a是方程的实数根,可得,据此求出,利用根与系数关系得:=-3,变形为()-(),代入即可得到答案.【详解】解:∵a、b是方程的两个实数根,
∴=-3;
又∵,
∴,∴
=()-()=2017-(-3)
=1
即的值为1.
故选:D.【点睛】本题考查了根与系数的关系与一元二次方程的解,把化成()-()是解题的关键.6、C【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【详解】连接AC,OD.∵AB是直径,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.【点睛】本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.7、D【分析】先根据旋转性质及正方形的性质构造方程求正方形的边长,再利用勾股定理求值即可.【详解】绕点顺时针旋转后与重合四边形ABCD为正方形在中,故选D.【点睛】本题考查了全等三角形的性质、旋转的性质、正方形的性质、勾股定理,找到直角三角形运用勾股定理求值是解题的关键.8、B【解析】根据平移的性质:“平移不改变图形的形状和大小”来判断即可.【详解】解:根据“平移不改变图形的形状和大小”知:左图中所示的图案平移后得到的图案是B项,故选B.【点睛】本题考查了平移的性质,平移的性质是“经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移不改变图形的形状、大小和方向”.9、A【分析】如图(见解析),作于H,在中,由可以求出AH的长,再在中,由即可求出AE的长.【详解】如图,作于H在中,则在中,则故选:A.【点睛】本题考查了锐角三角函数,熟记常见角度的三角函数值是解题关键.10、B【解析】试题分析:根据抛物线的平移规律“左加右减,上加下减”,可直接求得平移后的抛物线的解析式为:.11、D【分析】根据题意列出相应的表格,得到所有等可能出现的情况数,进而找出满足题意的情况数,即可求出所求的概率.【详解】设印有中国国际进口博览会的标志为“”,印有进博会吉祥物“进宝”为,由题列表为所有的等可能的情况共有种,抽到的两卡片图案不相同的等可能情况共有种,,故选:D.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.12、C【分析】根据题意可证明,再利用相似三角形的性质,相似三角形面积的比等于相似比的平方,即可得出对应边的比值.【详解】解:∵∴∴根据相似三角形面积的比等于相似比的平方,可知对应边的比为.故选:C.【点睛】本题考查的知识点是相似三角形的性质,主要有①相似三角形周长的比等于相似比;②相似三角形面积的比等于相似比的平方;③相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.二、填空题(每题4分,共24分)13、【分析】将正六边形ABCDEF绕原点O逆时针旋转2019次时,点A所在的位置就是原D点所在的位置.【详解】2019×60°÷360°=336…3,即与正六边形ABCDEF绕原点O逆时针旋转3次时点A的坐标是一样的.当点A按逆时针旋转180°时,与原D点重合.连接OD,过点D作DH⊥x轴,垂足为H;由已知ED=1,∠DOE=60°(正六边形的性质),∴△OED是等边三角形,∴OD=DE=OE=1.∵DH⊥OE,∴∠ODH=30°,OH=HE=2,HD=.∵D在第四象限,∴D,即旋转2019后点A的坐标是.故答案为.【点睛】本题考查了正多边形和圆、旋转变换的性质,掌握正多边形的性质、旋转变换的性质是解题的关键.14、1【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:=2/3解得:x=1.∴黄球的个数为1.15、或;【分析】证出△ABO是等边三角形得出∠AOB=60°.再分两种情况:点C在优弧上,则∠BCA=30°;点C在劣弧上,则∠BCA=(360°−∠AOB)=150°;即可得出结果.【详解】如图,连接OA,OB.∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA=(360°−∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.故答案为30°或150°.【点睛】此题考查了垂径定理、等边三角形的判定与性质、三角函数、弧长公式.熟练掌握垂径定理,证明△OAB是等边三角形是解决问题的关键.16、【分析】利用反比例函数k的几何意义得出a-b=4•OE,a-b=5•OF,求出=6,即可求出答案.【详解】如图,∵由题意知:a-b=4•OE,a-b=5•OF,∴OE=,OF=,又∵OE+OF=6,∴=6,∴a-b=,故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征,能求出方程=6是解此题的关键.17、1.【分析】根据二次根式的性质=|a|开平方,再结合数轴确定a﹣1,a+b,1﹣b的正负性,然后去绝对值,最后合并同类项即可.【详解】原式=|a﹣1|﹣|a+b|+|1﹣b|=1﹣a﹣(﹣a﹣b)+(1﹣b)=1﹣a+a+b+1﹣b=1,故答案为:1.【点睛】此题主要考查了二次根式的化简和性质,正确把握绝对值的性质是解答此题的关键.18、x2﹣4=0【分析】根据一元二次方程的根与系数的关系,即可求出答案【详解】设方程x2﹣mx+n=0的两根是2,﹣2,∴2+(﹣2)=m,2×(﹣2)=n,∴m=0,n=﹣4,∴该方程为:x2﹣4=0,故答案为:x2﹣4=0【点睛】本题主要考查一元二次方程的根与系数的关系,掌握一元二次方程ax2+bx+c=0的两个根x1,x2与系数的关系:x1+x2=,x1x2=,是解题的关键.三、解答题(共78分)19、(1)黄球有1个;(2);(3).【分析】(1)首先设口袋中黄球的个数为x个,根据题意得:,解此方程即可求得答案.(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案.(3)由若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;直接利用概率公式求解即可求得答案.【详解】解:(1)设口袋中黄球的个数为x个,根据题意得:,解得:x=1.经检验:x=1是原分式方程的解.∴口袋中黄球的个数为1个.(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:.(3)∵摸到红球得5分,摸到黄球得3分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,∴乙同学已经得了7分.∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率为:.20、,【分析】根据一元二次方程的解法,配方法或者公式法解答即可.【详解】解:由题意可知:a=4,b=﹣2,c=﹣1,∴△=4+16=21,∴x=;【点睛】本题主要考查解一元二次方程,熟练掌握方程各种解法是解答关键.21、;【分析】根据概率的计算法则得出概率,首先根据题意列出表格,然后求出概率.【详解】(1)P(恰好是A,a)的概率是=(2)依题意列表如下:共有9种情形,每种发生可能性相等,其中恰好是两对家庭成员有(AB,ab),(AC,ac),(BC,bc)3种,故恰好是两对家庭成员的概率是P=考点:概率的计算.22、(1)16;(2)2或;(3)【分析】(1)过C作CH⊥AB与H,在Rt△BCH中,求出CH、BH,再求出CD即可解决问题;
(2)分两种情形①∠BCE=∠BAE=90°,由BE=BE,得△BEC≌△BEA;②∠BEC=∠BAE=90°,延长CE交BA延长线于T,得△BEC≌△BET;分别求解即可;
(3)根据DM∥AB,得,构建函数关系式即可;【详解】解:(1)如图,过作于,∵,,∴四边形为矩形.在中,,,,∴,∴,则四边形的面积.(2)∵平分,∴,当与相似时,①,∵,∴,∴,在中,,∴.②,延长交延长线于,∵,,,∴,∴,,∵,∴.令,则在中,,,,∴,解得.综上,当与相似时,线段的长为2或.(3)延长交延长线于,∵,∴,∴.在中,.则,又∵,∴,即,解得.【点睛】本题考查了全等三角形与相似三角形的判定和性质,三角函数,勾股定理,以及二次函数的应用,正确作出辅助线构造相似三角形与全等三角形是解题的关键.23、(1)y=﹣x2+2x+3;(2)①S=﹣m2+3m,1≤m≤3;②P(,3);(3)存在,点P的坐标为(,3)或(﹣3+3,12﹣6).【分析】(1)将点B,C的坐标代入即可;(2)①求出顶点坐标,直线MB的解析式,由PD⊥x轴且知P(m,﹣2m+6),即可用含m的代数式表示出S;②在①的情况下,将S与m的关系式化为顶点式,由二次函数的图象及性质即可写出点P的坐标;(3)分情况讨论,如图2﹣1,当时,推出,则点P纵坐标为3,即可写出点P坐标;如图2﹣2,当时,证,由锐角三角函数可求出m的值,即可写出点P坐标;当时,不存在点P.【详解】(1)将点B(3,0),C(0,3)代入,得,解得,∴二次函数的解析式为;(2)①∵,∴顶点M(1,4),设直线BM的解析式为,将点B(3,0),M(1,4)代入,得,解得,∴直线BM的解析式为,∵PD⊥x轴且,∴P(m,﹣2m+6),∴,即,∵点P在线段BM上,且B(3,0),M(1,4),∴;②∵,∵,∴当时,S取最大值,∴P(,3);(3)存在,理由如下:①如图2﹣1,当时,∵,∴四边形CODP为矩形,∴,将代入直线,得,∴P(,3);②如图2﹣2,当∠PCD=90°时,∵,,∴,∵,∴,∴,∴,∴,∴,解得(舍去),,∴P(,),③当时,∵PD⊥x轴,∴不存在,综上所述,点P的坐标为(,3)或(,).【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.24、(1)(3,4);(2)或;(3)m的取值范围是或.【分析】(1)根据点C到x轴、y轴的距离解答即可;(2)根据“坐标轴三角形”的定义求出线段DF和EF,然后根据三角形的面积公式求解即可;(3)根据题意可得:符合题意的直线MN应为y=x+b或y=-x+b.①当直线MN为y=x+b时,结合图形可得直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值,根据等腰直角三角形的性质和勾股定理可求得b的最小值,进而可得m的最大值;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值,根据等腰直角三角形的性质和勾股定理可求得b的最大值,进而可得m的最小值,可得m的取值范围;②当直线MN为y=-x+b时,同①的方法可得m的另一个取值范围,问题即得解决.【详解】解:(1)根据题意作图如下:由图可知:点C到x轴距离为4,到y轴距离为3,∴C(3,4);故答案为:(3,4);(2)∵点D(2,1),点E(e,4),点D,E,F的“坐标轴三角形”的面积为3,∴,,∴,即=2,解得:e=4或e=0;(3)由点N,M,G的“坐标轴三角形”为等腰三角形可得:直线MN为y=x+b或y=-x+b.①当直线MN为y=x+b时,由于点M的坐标为(m,4),可得m=4-b,由图可知:当直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值.此时直线MN记为M1N1,其中N1为切点,T1为直线M1N1与y轴的交点.∵△ON1T1为等腰直角三角形,ON=,∴,∴b的最小值为-3,∴m的最大值为m=4-b=7;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值.此时直线MN记为M2N2,其中N2为切点,T2为直线M2N2与y轴的交点.∵△ON2T为等腰直角三角形,ON2=,∴,∴b的最大值为3,∴m的最小值为m=4-b=1,∴m的取值范围是;②当直线MN为y=-x+b时,同理可得,m=b-4,当b=3时,m=-1;当b=-3时,m=-7;∴m的取值范围是.综上所述,m的取值范围是或.【点睛】本题是新定义概念题,主要考查了三角形的面积、直线与圆相切的性质、等腰三角形的性质和勾股定理等知识,正确理解题意、灵活应用数形结合的思想和分类讨论思想是解题的关键.25、(1)y1=﹣,y2=x+6;(2)x≤﹣10或﹣2≤x<0;(3)点P的坐标为(0,4)或(0,1).【分析】(1)先把A点坐标代入y=中求出k得到反比例函数解析式为y=﹣,再利用反比例函数解析式确定B(﹣10,1),然后利用待定系数法求一次解析式;(2)根据图象即可求得;(3)设一次函数图象与y轴的交点为Q,易得Q(0,6),设P(0,m),利用三角形面积公式,利用S△APB=S△BPQ﹣S△APQ得到|m﹣6|×(10﹣2)=1,然后解方程求出m即可得到点P的坐标.【详解】解:(1)把A(﹣2,5)代入反比例函数y1=得k=﹣2×5=﹣10,∴反比例函数解析式为y1=﹣,把B(n,1)代入y1=﹣得n=﹣10,则B(﹣10,1),把A(﹣2,5)、B(﹣10,1)代入y2=ax+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年外语水平考试复习试卷及答案
- 2025年市场营销专业知识考试试卷及答案
- 2025年生物统计学研究生入学考试试卷及答案
- 五金建材购销合同协议书范本
- 2025年可持续发展与环境保护专业综合能力考核试题及答案
- 2025年电气工程师考试试题及答案回顾
- 2025年服装设计职业资格考试试卷及答案
- 2025年翻译与跨文化交流专业知识考试题及答案
- 五年级数学拓展题编制教案
- 郑州手房购房合同
- 2025年包头市钢兴实业(集团)有限公司招聘笔试冲刺题(带答案解析)
- 2025中考数学押题预测 (广西卷)(试卷+答案详解)
- 2025年高考语文备考之常见易错成语1700例
- 科技公司实验室管理制度
- 2025年人教版新教材英语小学五年级下册复习计划
- 四川省成都市达标名校2025届高二数学第二学期期末质量检测试题含解析
- 2024广西农村信用社(农村商业银行农村合作银行)乡村振兴人才招聘946人笔试历年典型考题及考点剖析附带答案详解
- 仿制药项目立项可行性报告
- 四川省遂宁市射洪市射洪中学校2024-2025学年七年级下学期5月期中语文试题(含答案)
- 如何做质量管理
- 新能源汽车动力电池管理技术考核试题及答案
评论
0/150
提交评论