版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
排列、组合复习课排列与排列数
定义:一般地,从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用表示.有关公式:组合与组合数:
定义:一般地,从n个不同元素中取出m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合。所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用表示。有关公式:3排列与组合的区别:前者先选出元素,再按一定的顺序排成一列,后者只要选出元素并成一组即可;两个排列相同当且仅当两个排列的元素完全相同,且元素的顺序也相同,如abc与acb是不同的排列;两个组合相同,只要元素完全相同,可从集合的观点来看,如{a,b,c}{a,c,b}是同一集合。4常用解题方法及适用题目类型
⑴直接法:特殊元素法、特殊位置法(两者适用某一个或几个元素在指定的位置或不在指定的位置)、捆绑法(两个或两个以上的元素必须相邻)、插空法(两个或两个以上的元素必须不相邻)、挡板法(相同的元素分成若干部分,每部分至少一个)
⑵间接法(排除法,正难则反的思想).例1
学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?解先排学生共有A88
种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有A74种选法.根据乘法原理,共有的不同坐法为A88A74
种.结论1
插空法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可.分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.例2
5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?
解
因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有A66
种排法,其中女生内部也有A33
种排法,根据乘法原理,共有A66A33种不同的排法.结论2
捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列.分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.例3
高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?解
此题可以转化为:将12个相同的白球分成8份,有多少种不同的分法问题,因此须把这12个白球排成一排,在11个空档中放上7个隔板,每个空档最多放一个,即可将白球分成8份,显然有种不同的放法,所以名额分配方案有种.结论3
隔板法:解决指标分配问题分析此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解.例4
袋中有5分不同硬币23个,1角不同硬币10个,如果从袋中取出2元钱,有多少种取法?解
把所有的硬币全部取出来,将得到0.05×23+0.10×10=2.15元,所以比2元多0.15元,所以剩下0.15元即剩下3个5分或1个5分与1个1角,所以共有种取法.结论4:
剩余法:在组合问题中,有多少取法,就有多少种剩法,他们是一一对应的,因此,当求取法困难时,可转化为求剩法.分析
此题是一个组合问题,若是直接考虑取钱的问题的话,情况比较多,也显得比较凌乱,难以理出头绪来.但是如果根据组合数性质考虑剩余问题的话,就会很容易解决问题.例5、9人排成一行,下列情形分别有多少种排法?
⑴甲不站排头,乙不站排尾点评:利用对称的思想,(一)先排甲(特殊元素优先考虑)(二)先排尾位(特殊位置优先考虑)
(三)间接法练习:用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中1不在个位的数共有_______种。
分析:五个数组成三位数的全排列有个,0排在首位的有个,1排在末尾的有,减掉这两种不合条件的排法数,再加回百位为0同时个位为1的排列数(为什么?)故共有种。⑵甲乙必须排在一起,丙丁不能排在一起点评:小团体排列问题中,先整体后局部,再结合不相邻问题的插空处理。练习:(2005·辽宁)用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有___________个.(用数字作答)
将1与2,3与4,5与6捆绑在一起排成一列有种,再将7、8插入4个空位中的两个有种,故有种.引申:用1、2、3、4、5、6、组成没有重复数字的六位数,要求1与2相邻,3与4相邻,5与6相邻,现将7、8插进去,仍要求1与2相邻,3与4相邻,5与6相邻,那么八位数共有___________个.(用数字作答)[A3323(A42+A41A22)=960]
⑶甲乙丙从左到右排列(固定顺序问题)分析:评:对于某几个元素顺序一定的排列问题,可先将这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数.引申:有三人从左到右顺序一定
点评:定序问题除法处理分析:
练习:有4名男生,3名女生。3名女生高矮互不等,将7名学生排成一行,要求从左到右,女生从矮到高排列,有多少种排法?⑷前排三人,中间三人,后排三人
分析:引申:前排一人,中间二人,后排六人点评:分排问题直排处理练习:
七人坐两排座位,第一排坐3人,第二排坐4人,则有多少种不同的坐法?
分析:7个人,可以在前后排随意就坐,再无其他限制条件,故两排可看作一排处理,所以不同的坐法有种.⑸分成甲、乙、丙三组,甲组4人,乙组3人,丙组2人。分析:
引申:①分成甲、乙、丙三组,一组4人,一组3人,一组2人分析:
②分成甲、乙、丙三组,每组3人。分析:⑹分成三组,每组3人分析:引申:分成三组,一组5人,另两组各两人分析:点评:局部均分无序问题易出错实验法(穷举法)
题中附加条件增多,直接解决困难时,用实验逐步寻求规律有时也是行之有效的方法。
例
将数字1,2,3,4填入标号为1,2,3,4的四个方格内,每个方格填1个,则每个方格的标号与所填的数字均不相同的填法种数有()A.6B.9C.11D.23分析:此题考查排列的定义,由于附加条件较多,解法较为困难,可用实验法逐步解决。第一方格内可填2或3或4。如填2,则第二方格中内可填1或3或4。若第二方格内填1,则第三方格只能填4,第四方格应填3。若第二方格内填3,则第三方格只能填4,第四方格应填1。同理,若第二方格内填4,则第三方格只能填1,第四方格应填3。因而,第一格填2有3种方法。不难得到,当第一格填3或4时也各有3种,所以共有9种。练习(不对号入座问题)(1)(2004湖北)将标号为1,2,3,……,10的10个球放入标号为1,2,3,……,10的10个盒子中,每个盒内放一个球,恰好有3个球的标号与其所在盒子的标号不一致的放入方法有___________种(2)编号为1、2、3、4、5的五个球放入编号为1、2、3、4、5的五个盒子里,至多有2个对号入座的情形有___________种109直接法:间接法:住店法解决“允许重复排列问题”要注意区分两类元素:
一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解。例6
七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有()A.B.CD.分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得种。注:对此类问题,常有疑惑,为什么不是呢?用分步计数原理看,5是步骤数,自然是指数。
对应法例7
在100名选手之间进行单循环淘汰赛(即一场比赛失败要退出比赛),最后产生一名冠军,问要举行几场?
分析:要产生一名冠军,需要淘汰掉冠军以外的所有选手,即要淘汰99名选手,淘汰一名选手需要进行一场比赛,所以淘汰99名选手就需要99场比赛。例8、高二(1)班从7人中选4人组成4×100m接力赛其中甲乙二人不跑中间两棒,有多少种选法?
点评:排列组合综合题的解法应遵循在分类的基础上,先组合后排列的原则,分类与分步相结合,分类时做到不重复不遗漏.练习:(徐州二检)从6人中选4人组成4×100m接力赛,其中甲跑第一棒,乙不跑最后一棒,有多少种选法?分析:(一)直接法(二)间接法48例9、从正方体的6个面中任选3个,其中2个面不相邻的选法有多少种?练习:从正方体的8个顶点中选4个作四面体,则不同的四面体的个数为
。58练习:(南通一检)一个三位数,其十位上的数字既小于百位上的数字也小于个位上的数字(如735,414等),那么这样的三位数有
个.285
练习1
某人射击8枪,命中4枪,那么命中的4枪中恰有3枪是连中的情形有几种?练习2
一排8个座位,3人去坐,每人两边至少有一个空座的坐法有多少种?练习3
马路上有编号为1,2,3,……10的十只路灯,为节约电而不影响照明,可以把其中的三只路灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉马路两端的灯,问满足条件的关灯方法有多少种?练习4A、B、C、D、E五人站成一排,如果B必须站在A的右边,那么不同的站法有多少种?练习5
某电路有5个串
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025内蒙古鄂尔多斯市东胜区胜都人才资源有限公司招聘15人笔试历年难易错考点试卷带答案解析
- 人行道透水砖铺设施工工艺及施工方法要点
- 消防技术交底
- 超市防损控制培训
- 超市营运培训课件
- 超市电脑员培训
- 《金融基础设施监督管理办法》测试练习竞赛考试题库(附答案)
- 行车设备安全培训
- 电子合同签署流程教程
- 行车技能培训
- 2026年广东省事业单位集中公开招聘高校毕业生11066名笔试模拟试题及答案解析
- 2025年淮北职业技术学院单招职业适应性测试题库带答案解析
- 安全生产九个一制度
- 司法鉴定资料专属保密协议
- (更新)成人留置导尿护理与并发症处理指南课件
- 丝路基金招聘笔试题库2026
- 巨量引擎《2026巨量引擎营销IP通案》
- 2026届高考化学冲刺复习化学综合实验热点题型
- 电缆接驳施工方案(3篇)
- 2022年7月23日广东省事业单位高校毕业生招聘考试《基本能力测试》真题试卷解析
- 唐代皇太子教育制度与储君培养
评论
0/150
提交评论