2023届内蒙古自治区鄂尔多斯市东胜区第二中学数学九年级第一学期期末教学质量检测模拟试题含解析_第1页
2023届内蒙古自治区鄂尔多斯市东胜区第二中学数学九年级第一学期期末教学质量检测模拟试题含解析_第2页
2023届内蒙古自治区鄂尔多斯市东胜区第二中学数学九年级第一学期期末教学质量检测模拟试题含解析_第3页
2023届内蒙古自治区鄂尔多斯市东胜区第二中学数学九年级第一学期期末教学质量检测模拟试题含解析_第4页
2023届内蒙古自治区鄂尔多斯市东胜区第二中学数学九年级第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知二次函数y=ax2+bx+c的图象大致如图所示,则下列关系式中成立的是()A.a>0 B.b<0 C.c<0 D.b+2a>02.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为(

)A.2.4m B.24m C.0.6m D.6m3.如图是某体育馆内的颁奖台,其左视图是()A. B.C. D.4.如图,△ABC的顶点在网格的格点上,则tanA的值为()A. B. C. D.5.如图,在第一象限内,,是双曲线()上的两点,过点作轴于点,连接交于点,则点的坐标为()A. B. C. D.6.二次函数的图象如图所示,若关于的一元二次方程有实数根,则的最大值为()A.-7 B.7 C.-10 D.107.已知是关于的一元二次方程的两个根,且满足,则的值为()A.2 B. C.1 D.8.已知二次函数yax22ax3a23(其中x是自变量),当x2时,y随x的增大而增大,且3x0时,y的最大值为9,则a的值为().A.1或 B.或 C. D.19.下列事件是必然事件的是()A.打开电视机,正在播放动画片 B.经过有交通信号灯的路口,遇到红灯C.过三点画一个圆 D.任意画一个三角形,其内角和是10.顺次连结任意四边形各边中点所得到的四边形一定是()A.平行四边形 B.菱形 C.矩形 D.正方形11.已知二次函数(为常数),当时,函数值的最小值为,则的值为()A. B. C. D.12.在平面直角坐标系中,二次函数()的图象如图所示,现给出以下结论:①;②;③;④(为实数)其中结论错误的有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,在△ABC中,点D、E分别在△ABC的两边AB、AC上,且DE∥BC,如果,,,那么线段BC的长是______.14.两幢大楼的部分截面及相关数据如图,小明在甲楼A处透过窗户E发现乙楼F处出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m高的D处喷出,水流正好经过E,F.若点B和点E、点C和F的离地高度分别相同,现消防员将水流抛物线向上平移0.4m,再向左后退了____m,恰好把水喷到F处进行灭火.15.分解因式:2x2﹣8=_____________16.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为____.17.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.18.如图,在四边形中,,,,分别为,的中点,连接,,.,平分,,的长为__.三、解答题(共78分)19.(8分)成都市某景区经营一种新上市的纪念品,进价为20元/件,试营销阶段发现;当销售单价是30元时,每天的销售量为200件;销售单价每上涨2元,每天的销售量就减少10件.这种纪念品的销售单价为x(元).(1)试确定日销售量y(台)与销售单价为x(元)之间的函数关系式;(2)若要求每天的销售量不少于15件,且每件纪念品的利润至少为30元,则当销售单价定为多少时,该纪念品每天的销售利润最大,最大利润为多少?20.(8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?21.(8分)如图,△ABC的三个顶点在平面直角坐标系中的坐标分别为A(3,3),B(2,1),C(5,1),将△ABC绕点O逆时针旋转180°得△A′B′C′,请你在平面直角坐标系中画出△A′B′C′,并写出△A′B′C′的顶点坐标.22.(10分)如图,在电线杆上的点处引同样长度的拉线,固定电线杆,在离电线杆6米处安置测角仪(其中点、、、在同一条直线上),在处测得电线杆上点处的仰角为,测角仪的高为米.(1)求电线杆上点离地面的距离;(2)若拉线,的长度之和为18米,求固定点和之间的距离.23.(10分)如图,已知圆锥的底面半径是2,母线长是6.(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.24.(10分)小明和小亮用三枚质地均匀的硬币做游戏,游戏规则是:同时抛掷这三枚硬币,出现两枚正面向上,一枚正面向下,则小明赢;出现两枚正面向下,一枚正面向上,则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.25.(12分)如图,在△ABC中,D为BC边上的一点,且AC=,CD=4,BD=2,求证:△ACD∽△BCA.26.如图,在每个小正方形的边长均为1的方格纸中,线段的端点、均在小正方形的顶点上.(1)在方格纸中画出以为一条直角边的等腰直角,顶点在小正方形的顶点上.(2)在方格纸中画出的中线,将线段绕点顺时针旋转得到线段,画出旋转后的线段,连接,直接写出四边形的面积.

参考答案一、选择题(每题4分,共48分)1、D【解析】分析:根据抛物线的开口、对称轴及与y轴的交点的位置,可得出a<1、c>1、b>﹣2a,进而即可得出结论.详解:∵抛物线开口向下,对称轴大于1,与y轴交于正半轴,∴a<1,﹣>1,c>1,∴b>﹣2a,∴b+2a>1.故选D.点睛:本题考查了二次函数图象与系数的关系,根据抛物线的对称轴大于1找出b>﹣2a是解题的关键.2、D【解析】试题解析:作AN⊥EF于N,交BC于M,

∵BC∥EF,

∴AM⊥BC于M,

∴△ABC∽△AEF,

∴,

∵AM=0.6,AN=30,BC=0.12,

∴EF==6m.

故选D.3、D【分析】找到从左面看所得到的图形即可.【详解】解:从左边看去是上下两个矩形,下面的比较高.故选D.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的观察方法.4、A【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【详解】解:如图作CD⊥AB于D,CD=,AD=2,tanA=,故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5、D【分析】先根据P点坐标计算出反比例函数的解析式,进而求出M点的坐标,再根据M点的坐标求出OM的解析式,进而将代入求解即得.【详解】解:将代入得:∴∴反比例函数解析式为将代入得:∴∴设OM的解析式为:∴将代入得∴∴OM的解析式为:当时∴点的坐标为.故选:D.【点睛】本题考查待定系数法求解反比例函数和正比例函数解析式,解题关键是熟知求反比例函数和正比例函数解析式只需要一个点的坐标.6、B【分析】把一元二次方程根的个数问题,转化为二次函数的图象与直线y=-m的图象的交点问题,然后结合图形即可解答.【详解】解:将变形可得:∵关于的一元二次方程有实数根,∴二次函数的图象与直线y=-m的图象有交点如下图所示,易得当-m≥-7,二次函数的图象与直线y=-m的图象有交点解得:m≤7故的最大值为7故选B.【点睛】此题考查的是二次函数和一元二次方程的关系,掌握将一元二次方程根的情况转化为二次函数图象与直线图象之间的交点问题和数形结合的数学思想是解决此题的关键.7、B【分析】根据根与系数的关系,即韦达定理可得,易求,从而可得,解可求,再利用根的判别式求出符合题意的.【详解】由题意可得,a=1,b=k,c=-1,∵满足,∴①根据韦达定理②把②式代入①式,可得:k=-2故选B.【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合进行解题.8、D【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由3x0时时,y的最大值为9,可得x=-3时,y=9,即可求出a.【详解】∵二次函数yax22ax3a23(其中x是自变量),∴对称轴是直线,∵当x⩾2时,y随x的增大而增大,∴a>0,∵3x0时,y的最大值为9,又∵a>0,对称轴是直线,,∴在x=-3时,y的最大值为9,∴x=-3时,,∴,∴a=1,或a=−2(不合题意舍去).故选D.【点睛】此题考查二次函数的性质,解题关键在于掌握二次函数的基本性质即可解答.9、D【分析】必然事件是在一定条件下,必然会发生的事件.依据定义判断即可.【详解】A.打开电视机,可能正在播放新闻或其他节目,所以不是必然事件;B.经过有交通信号灯的路口,遇到红灯,也可能遇到绿灯,所以不是必然事件;C.过三点画一个圆,如果这三点在一条直线上,就不能画圆,所以不是必然事件;D.任意画一个三角形,其内角和是,是必然事件.故选:D【点睛】本题考查的是必然事件,必然事件是一定发生的事件.10、A【分析】顺次连结任意四边形各边中点所得到的四边形,一组对边平行并且等于原来四边形某一条对角线的一半,说明新四边形的对边平行且相等,所以是平行四边形.【详解】解:如图,连接AC,∵E、F、G、H分别是四边形ABCD边的中点,∴HG∥AC,HG=AC,EF∥AC,EF=AC;∴EF=HG且EF∥HG;∴四边形EFGH是平行四边形.故选:A.【点睛】本题考查平行四边形的判定,解题的关键是根据中位线性质证得EF=HG且EF∥HG.11、B【分析】函数配方后得,抛物线开口向上,在时,取最小值为-3,列方程求解可得.【详解】∵,∴抛物线开口向上,且对称轴为,∴在时,有最小值-3,即:,解得,故选:B.【点睛】本题考查了二次函数的最值,熟练掌握二次函数的图象及增减性是解题的关键.12、B【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①由抛物线可知:,,对称轴,∴,∴,故①错误;②由对称轴可知:,∴,,故②错误;③关于的对称点为,∴时,,故③正确;④当时,y的最小值为,∴时,,∴,故④正确故选:B.【点睛】本题考查了二次函数图象与系数的关系,结合图象得出系数之间的关系是解题的关键.二、填空题(每题4分,共24分)13、;【分析】根据DE∥BC可得,再由相似三角形性质列比例式即可求解.【详解】解:,,,又∵,,,,解得:故答案为:.【点睛】本题主要考查了平行线分线段成比例定理的应用,找准对应线段是解题的关键.14、【详解】设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入得,20k+21.2=9.2,∴k=-0.6,∴y=-0.6x+21.2.把y=6.2代入得,-0.6x+21.2=6.2,∴x=25,∴F(25,6.2).设抛物线解析式为:y=ax2+bx+1.2,把E(20,9.2),F(25,6.2)代入得,,解之得:,∴y=-0.04x2+1.2x+1.2,设向上平移0.4m,向左后退了hm,恰好把水喷到F处进行灭火由题意得y=-0.04(x+h)2+1.2(x+h)+1.2+0.4,把F(25,6.2)代入得,6.2=-0.04×(25+h)2+1.2(25+h)+1.2+0.4,整理得:h2+20h-10=0,解之得:,(舍去).∴向后退了m故答案是:【点睛】本题考查了二次函数和一次函数的实际应用,设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入求出直线解析式,从而求出点F的坐标.把E(20,9.2),F(25,6.2)代入y=ax2+bx+1.2求出二次函数解析式.设向左平移了hm,表示出平移后的解析式,把点F的坐标代入可求出k的值.15、2(x+2)(x﹣2)【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.16、1【分析】利用角角定理证明△BAD∽△BCA,然后利用相似三角形的性质得到,求得BC的长,从而使问题得解.【详解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴.∵AB=6,BD=4,∴,∴BC=9,∴CD=BC-BD=9-4=1.【点睛】本题考查相似三角形的判定与性质,熟记判定方法准确找到相似三角形对应边是本题的解题关键..17、1【解析】根据题目中的图形,可以发现〇的变化规律,从而可以得到第2019个图形中〇的个数.【详解】由图可得,第1个图象中〇的个数为:,第2个图象中〇的个数为:,第3个图象中〇的个数为:,第4个图象中〇的个数为:,……∴第2019个图形中共有:个〇,故答案为:1.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.18、.【分析】根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明BM=MN.再证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【详解】在中,、分别是、的中点,,,在中,是中点,,,,,平分,,,,,,,,,.故答案为.【点睛】本题考查了三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用:三角形的中位线平行于第三边,并且等于第三边的一半.三、解答题(共78分)19、(1);(2)当销售单价定为50元时,该纪念品每天的销售利润最大,最大利润为3000元.【分析】(1)利用“实际销售量=原销售量-10×”可得日销售量y(台)与销售单价为x(元)之间的函数关系式;(2))设每天的销售利润为w元,按照每件的利润乘以实际销量可得w与x之间的函数关系式,根据每天的销售量不少于15件,且每件纪念品的利润至少为30元求出x的取值范围,利用二次函数的性质可得答案;【详解】(1);(2)设每天的销售利润为w元.则,∵,∴,∵且对称轴为:直线,∴抛物线开口向下,在对称轴的右侧,w随着x的增大而减小,∴当时,w取最大值为3000元.答:当销售单价定为50元时,该纪念品每天的销售利润最大,最大利润为3000元.【点睛】本题考查了一次函数的应用,二次函数的应用,以及一元一次不等式组的应用,熟练掌握二次函数的性质是解答本题的关键.20、(1)1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【分析】(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.【详解】解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.故答案为:1000﹣x,﹣10x2+1300x﹣1.(2)﹣10x2+1300x﹣1=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得,解得:44≤x≤46.w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65,∴当44≤x≤46时,y随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.21、A′(﹣3,﹣3),B′(﹣2,﹣1),C′(﹣5,﹣1).【解析】试题分析:由于△ABC绕点O逆时针旋转180°得△A′B′C′,则△ABC和△A′B′C′关于原点中心对称,然后根据关于原点对称的点的坐标特征写出A′点、B′点、C′点的坐标,再描点即可.解:如图,△A′B′C′为所作,A′(﹣3,﹣3),B′(﹣2,﹣1),C′(﹣5,﹣1).考点:作图-旋转变换.22、(1)米(2)米【分析】(1)过点A作AH⊥CD于点H,可得四边形ABDH为矩形,根据A处测得电线杆上C处得仰角为30°,在△ACH中求出CH的长度,从而得出CD的长;(2)然后在Rt△CDE中求出DE的长度,根据等腰三角形的性质,可得出DF=DE,从而得出EF的长.【详解】解:(1)过作于,由条件知,为矩形,∴,.在中,,即,∴.∴.∴为米.(2)∵,,∴,在中,,,∴,∵,,∴,∴,∴、之间的距离为米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.23、(1)∠ABC=120°;(2)这根绳子的最短长度是.【分析】(1)根据勾股

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论