北京市部分区重点中学2023届中考数学考试模拟冲刺卷含解析_第1页
北京市部分区重点中学2023届中考数学考试模拟冲刺卷含解析_第2页
北京市部分区重点中学2023届中考数学考试模拟冲刺卷含解析_第3页
北京市部分区重点中学2023届中考数学考试模拟冲刺卷含解析_第4页
北京市部分区重点中学2023届中考数学考试模拟冲刺卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在△ABC中,DE∥BC,若,则等于()A. B. C. D.2.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)01234人数(人)22311A.3,2.5 B.1,2 C.3,3 D.2,23.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为()A.83×105 B.0.83×106 C.8.3×106 D.8.3×1074.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)5.下列图标中,是中心对称图形的是()A. B.C. D.6.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是()A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃7.如图是一个由4个相同的正方体组成的立体图形,它的左视图为()A. B. C. D.8.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛 B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁 D.渚碧礁﹣﹣曾母暗山9.在平面直角坐标系中,将点P(﹣4,2)绕原点O顺时针旋转90°,则其对应点Q的坐标为()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)10.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=()A. B.2 C. D.二、填空题(共7小题,每小题3分,满分21分)11.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.12.计算:___________.13.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.14.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写出一个即可).15.如图,在△ABC中,AB=3+,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为_____.16.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.17.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.三、解答题(共7小题,满分69分)18.(10分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.(1)求证:AC是⊙O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)19.(5分)如图,在△ABC中,AB=AC,点,在边上,.求证:.20.(8分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.该同学从5个项目中任选一个,恰好是田赛项目的概率为______;该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.21.(10分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.22.(10分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)23.(12分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型ABABO人数105(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?24.(14分)先化简,再求值:,其中

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题解析::∵DE∥BC,∴,故选C.考点:平行线分线段成比例.2、D【解析】试题解析:表中数据为从小到大排列.数据1小时出现了三次最多为众数;1处在第5位为中位数.所以本题这组数据的中位数是1,众数是1.故选D.考点:1.众数;1.中位数.3、C【解析】

科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10|)的记数法.【详解】830万=8300000=8.3×106.故选C【点睛】本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.4、A【解析】

首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【详解】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:A.【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.5、B【解析】

根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.7、B【解析】

根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B.8、A【解析】

根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.【详解】由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.【点睛】本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.9、A【解析】

首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.【详解】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P点坐标为(﹣4,2),∴Q点坐标为(2,4),故选A.【点睛】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.10、C【解析】

如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.【详解】解:如图所示,∵BD=2、CD=1,∴BC===,则sin∠BCA===,故选C.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.二、填空题(共7小题,每小题3分,满分21分)11、2.【解析】

把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.【详解】解:∵m是方程2x2﹣3x﹣2=0的一个根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案为:2.【点睛】本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.12、x+1【解析】

先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果.【详解】解:=.故答案是:x+1.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.13、2【解析】试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:41814、1【解析】

由一次函数图象经过第一、三、四象限,可知k>0,﹣1<0,在范围内确定k的值即可.【详解】解:因为一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案为1.【点睛】根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.15、【解析】

如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是线段BD的长.【详解】如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四边形ADEF是菱形,∴F,D关于直线AE对称,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是线段BD的长,∵∠CAB=180°-105°-45°=30°,设AF=EF=AD=x,则DH=EG=x,FG=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值为,故答案为.【点睛】本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题.16、1.【解析】

解:设圆锥的底面圆半径为r,根据题意得1πr=,解得r=1,即圆锥的底面圆半径为1cm.故答案为:1.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.17、﹣1.【解析】试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.解:∵扇形OAB的圆心角为90°,扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴SQ+SM=SM+SP=(cm2),∴SQ=SP,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故答案为﹣1.考点:扇形面积的计算.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2);【解析】

(1)连接OD,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD,∠COD=∠ODB,又因为OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD,Rt△ODC与Rt△OAC是含30°的直角三角形,从而得到∠DOB=60°,即△BOD为等边三角形,再用扇形的面积减去△BOD的面积即可.【详解】(1)证明:连接OD,∵CD与圆O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,,∴△AOC≌△EOC(SAS),∴∠CAO=∠CDO=90°,则AC与圆O相切;(2)∵AB=OC=4,OB=OD,∴Rt△ODC与Rt△OAC是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD为等边三角形,图中阴影部分的面积=扇形DOB的面积﹣△DOB的面积,=.【点睛】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.19、见解析【解析】试题分析:证明△ABE≌△ACD即可.试题解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如图,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.20、(1);(2).【解析】

(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:.故答案为;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21、树高为5.5米【解析】

根据两角相等的两个三角形相似,可得△DEF∽△DCB,利用相似三角形的对边成比例,可得,代入数据计算即得BC的长,由AB=AC+BC,即可求出树高.【详解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:树高为5.5米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.22、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】

(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论