



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市淳辉中学2021年高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.是椭圆上的一点,和是焦点,若∠F1PF2=30°,则△F1PF2的面积等于
(
)
参考答案:B略2.已知函数,则其在点处的切线方程(
)A
B
C
D参考答案:A3.在棱长为1的正方体中,动点P在面对角线上,则的最小值为
(
)(A)
(B)(C)
(D)参考答案:B4.已知等差数列的公差为2,若成等比数列,则等于A.–4
B.–6
C.–8
D.–10参考答案:B5.将一枚骰子抛掷两次,若先后出现的点数分别为b、c,则方程有相等实根的概率为()A.
B.
C.
D.参考答案:D6.已知双曲线的一个焦点与抛物线的焦点重合,且其渐近线的方程为,则该双曲线的标准方程为(
)A.
B.
C.
D.参考答案:C略7.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279参考答案:B由分步乘法原理知:用0,1,…,9十个数字组成的三位数(含有重复数字的)共有9×10×10=900,组成无重复数字的三位数共有9×9×8=648,因此组成有重复数字的三位数共有900-648=252.8.某公司新招聘进8名员工,平均分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一个部门,另三名电脑编程人员也不能分给同一个部门,则不同的分配方案种数是()A.18 B.24 C.36 D.72参考答案:C【考点】计数原理的应用.【分析】分类讨论:①甲部门要2个2电脑编程人员和一个翻译人员;②甲部门要1个电脑编程人员和1个翻译人员.分别求得这2个方案的方法数,再利用分类计数原理,可得结论.【解答】解:由题意可得,有2种分配方案:①甲部门要2个电脑编程人员,则有3种情况;翻译人员的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑编程人员,则方法有3种;翻译人员的分配方法有2种;再从剩下的3个人种选2个人,方法有3种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选:C.9.函数在区间上的最小值是(
)
A.
B.0
C.1
D.2参考答案:B10.如图所示,在正方体ABCD-A1B1C1D1中,下列各式中运算结果为向量的是()A.①③
B.②④
C.③④
D.①②③④参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.用一张矩形的纸片分别围成两个不同的圆柱形纸筒Ⅰ、Ⅱ,纸筒Ⅰ的侧面积为24,纸筒Ⅱ的底面半径为3,则纸筒的Ⅱ的容积为
。参考答案:3612.曲线在点处的切线的斜率是_____参考答案:213.设直线与曲线的图像分别交于点,则的最小值为
参考答案:214.若双曲线E:=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于
.参考答案:9【考点】双曲线的简单性质.【分析】设|PF2|=x,由双曲线的定义及性质得|x﹣3|=6,由此能求出|PF2|.【解答】解:设|PF2|=x,∵双曲线E:=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,∴a=3,b=4.c=5,∴|x﹣3|=6,解得x=9或x=﹣3(舍).∴|PF2|=9.故答案为:9.【点评】本题考查双曲线中线段长的求法,是基础题,解题时要注意双曲线定义及简单性质的合理运用.15.命题“存在x∈R,x2+2x+2≤0”的否定是
。参考答案:任意x∈R,x2+2x+2>0
略16.已知x,y满足,则的最大值为__________.参考答案:417.一组数据2,x,4,6,10的平均值是5,则此组数据的标准差是
.参考答案:2【考点】极差、方差与标准差.【专题】概率与统计.【分析】由已知条件先求出x的值,再计算出此组数据的方差,由此能求出标准差.【解答】解:∵一组数据2,x,4,6,10的平均值是5,∴2+x+4+6+10=5×5,解得x=3,∴此组数据的方差[(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10﹣5)2]=8,∴此组数据的标准差S==2.故答案为:2.【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=x2+ax+b(a、b∈R),g(x)=2x2-4x-16,(1)求不等式g(x)<0的解集;(2)若|f(x)|≤|g(x)|对任意x∈R恒成立,求a,b;(3)在(2)的条件下,若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.
参考答案:(1)g(x)=2x2-4x-16<0,∴(x+2)(x-4)<0,∴-2<x<4.∴不等式g(x)<0的解集为{x|-2<x<4}.
……………4分(2)∵|x2+ax+b|≤|2x2-4x-16|对x∈R恒成立,∴当x=4,x=-2时成立,∴,∴,∴.
……………8分(3)由(2)知,f(x)=x2-2x-8.∴x2-2x-8≥(m+2)x-m-15(x>2),即x2-4x+7≥m(x-1).∴对一切x>2,均有不等式≥m成立.
……………10分而=(x-1)+-2≥2-2=2(当x=3时等号成立)∴实数m的取值范围是(-∞,2].
……………12分19.(本题满分10分)在抛物线上求一点,使这点到直线的距离最短.参考答案:设点,距离为,当时,取得最小值,此时为所求的点.20.工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);(Ⅲ)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小.参考答案:解:(I)无论以怎样的顺序派出人员,任务不能被完成的概率都是,所以任务能被完成的概率与三个被派出的先后顺序无关,并等于
(II)当依次派出的三个人各自完成任务的概率分别为时,随机变量X的分布列为
X123P
所需派出的人员数目的均值(数学期望)EX是
(III)(方法一)由(II)的结论知,当以甲最先、乙次之、丙最后的顺序派人时,
根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值.
下面证明:对于的任意排列,都有
……(*)
事实上,
即(*)成立.
(方法二)(i)可将(II)中所求的EX改写为若交换前两人的派出顺序,则变为.由此可见,当时,交换前两人的派出顺序可减小均值.
(ii)也可将(II)中所求的EX改写为,或交换后两人的派出顺序,则变为.由此可见,若保持第一个派出的人选不变,当时,交换后两人的派出顺序也可减小均值.
序综合(i)(ii)可知,当时,EX达到最小.即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.21.已知函数f(x)=lnx,g(x)=ax+b.(1)若曲线f(x)与曲线g(x)在它们的公共点P(1,f(1))处具有公共切线,求g(x)的表达式;(2)若φ(x)=﹣f(x)在[1,+∞)上是减函数,求实数m的取值范围.参考答案:【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出函数f(x)的导数,得到关于a的方程,求出a的值,计算g(1)=0,求出b的值,从而求出g(x)的解析式即可;(2)求出函数的导数,问题转化为2m﹣2≤x+,x∈[1,+∞),根据函数的单调性求出m的范围即可.【解答】解:(1)由已知得f′(x)=,所以f′(1)=1=a,a=2.又因为g(1)=0=a+b,所以b=﹣1,所以g(x)=x﹣1.(2)因为φ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淘宝摄影长期合同协议
- 澡堂合作或转让合同协议
- 窗帘工程标准合同协议
- 移动式吊车租赁合同协议
- 游戏陪玩工作合同协议
- 淘宝店员工合同协议
- 签订服装租凭合同协议
- 空地改造养殖合同协议
- 游艇保姆租赁合同协议
- 消防承包包工合同协议
- 2008年安徽省中考英语试卷及答案
- 医疗保障局干部职工能力提升年活动实施方案
- 超市项目投标书(宜佳)标书模板
- 仁爱版八年级下册英语unit5-topic2-教案
- YB/T 2010-2003铁路轨距挡板用热轧型钢
- 2023年辽宁高考数学试题及答案经典word版(理科)
- 设计管理资料课件
- 毛竹脚手架搭设施工方案
- 工贸行业重点可燃性粉尘目录(2015版)
- 内科学教学课件:脑梗死
- 《各级法院代字表》
评论
0/150
提交评论