下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1课时勾股定理太湖县白沙中学李敬胜1.经历探索勾股定理及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题.(重点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理的证明作8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,将它们像下图所示拼成两个正方形.求证:a2+b2=c2.解析:从整体上看,这两个正方形的边长都是a+b,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.证明:由图易知,这两个正方形的边长都是a+b,∴它们的面积相等.左边的正方形面积可表示为a2+b2+eq\f(1,2)ab×4,右边的正方形面积可表示为c2+eq\f(1,2)ab×4.∵a2+b2+eq\f(1,2)ab×4=c2+eq\f(1,2)ab×4,∴a2+b2=c2.方法总结:根据拼图,通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.探究点二:勾股定理【类型一】直接利用勾股定理求长度如图,已知在△ABC中,∠ACB=90°,AB=5cm,BC=3cm,CD⊥AB交AB于点D,求CD的长.解析:先运用勾股定理求出AC的长,再根据S△ABC=eq\f(1,2)AB·CD=eq\f(1,2)AC·BC,求出CD的长.解:∵在△ABC中,∠ACB=90°,AB=5cm,BC=3cm,∴由勾股定理得AC2=AB2-BC2=52-32=42,∴AC=4cm.又∵S△ABC=eq\f(1,2)AB·CD=eq\f(1,2)AC·BC,∴CD=eq\f(AC·BC,AB)=eq\f(4×3,5)=eq\f(12,5)(cm),故CD的长是eq\f(12,5)cm.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【类型二】利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,∠E=90°,所以S△ABE=eq\f(1,2)AE·BE=eq\f(1,2)AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=eq\f(1,4)AB2=eq\f(1,4)×32=eq\f(9,4);同理可得S△AHC+S△BCF=eq\f(1,4)AC2+eq\f(1,4)BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为eq\f(1,4)AB2+eq\f(1,4)AB2=eq\f(1,2)AB2=eq\f(1,2)×32=eq\f(9,2).故分别填eq\f(9,4),eq\f(9,2).方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.【类型三】勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是()eq\r(5)+1B.-eq\r(5)+1\r(5)-1\r(5)解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为eq\r(12+22)=eq\r(5),∴-1到A的距离是eq\r(,5).那么点A所表示的数为eq\r(5)-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离.【类型四】利用勾股定理证明等式如图,已知AD是△ABC的中线.求证:AB2+AC2=2(AD2+CD2).解析:结论中涉及线段的平方,因此可以考虑作AE⊥BC交BC于点E.在△ABC中构造直角三角形,利用勾股定理进行证明.证明:如图,过点A作AE⊥BC交BC于点E.在Rt△ABE、Rt△ACE和Rt△ADE中,AB2=AE2+BE2,AC2=AE2+CE2,AE2=AD2-ED2,∴AB2+AC2=(AE2+BE2)+(AE2+CE2)=2(AD2-ED2)+(DB-DE)2+(DC+DE)2=2AD2-2ED2+DB2-2DB·DE+DE2+DC2+2DC·DE+DE2=2AD2+DB2+DC2+2DE(DC-DB).又∵AD是△ABC的中线,∴BD=CD,∴AB2+AC2=2AD2+2DC2=2(AD2+CD2).方法总结:构造直角三角形,利用勾股定理把需要证明的线段联系起来.一般地,涉及线段之间的平方关系问题时,通常沿着这个思路去分析问题.【类型五】运用勾股定理解决折叠中的有关计算如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是()A.B.2C.D.解析:连接BM,MB′.设AM=x,在Rt△ABM中,AB2+AM2=BM2.在Rt△MDB′中,B′M2=MD2+DB′2.∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.故选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型六】分类讨论思想在勾股定理中的应用在△ABC中,AB=20,AC=15,AD为BC边上的高,且AD=12,求△ABC的周长.解析:应考虑高AD在△ABC内和△ABC外的两种情形.解:当高AD在△ABC内部时,如图①.在Rt△ABD中,由勾股定理,得BD2=AB2-AD2=202-122=162,∴BD=16.在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=81,∴CD=9.∴BC=BD+CD=25,∴△ABC的周长为25+20+15=60;当高AD在△ABC外部时,如图②.同理可得BD=16,CD=9.∴BC=BD-CD=7,∴△ABC的周长为7+20+15=42.综上所述,△ABC的周长为42或60.方法总结:题中未给出图形,作高构造直角三角形时,易漏掉原三角形为钝角三角形的情况.如在本例题中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年《教育心理学》考试复习题库归总及答案
- 安全考试题库大全2025及答案解析
- 生产安全题库判断题及答案解析
- 2025-2030绿色建筑技术发展趋势与投资机会分析报告
- 2025-2030绿色建材认证体系下免漆门行业发展评估
- 电功车安全驾驶常识题库及答案解析
- 2025-2030经颅磁刺激联合认知训练对发育障碍儿童疗效观察
- 2025-2030纳米载药系统靶向性提升技术与临床转化效率分析报告
- 2025-2030纳米肥料技术研发进展与产业化落地障碍突破方案
- 2025-2030纳米材料在购物袋领域的应用前景与商业化路径报告
- 中国汽车保险杠行业市场深度分析及发展前景预测报告
- 电池极柱连接行业现状深度解析
- 2025年全国企业员工全面质量管理知识竞赛必考题及答案
- 中华建筑之美课件
- 腹腔镜下直肠癌护理个案讲课件
- 3.1《祝福》课件-2024-2025学年高教版(2023)中职语文基础模块下册
- 纯化水检测管理制度
- DB31/ 1288-2021汽车维修行业大气污染物排放标准
- 塔里木油田分公司新疆塔里木盆地吐孜洛克气田开采矿山地质环境保护与土地复垦方案
- 2025年中考生物实验探究题专项卷:生物实验探究实验案例分析
- 第三章新时代交通文化与精神第二节交通精神具体体现13课件
评论
0/150
提交评论