版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中,,为的中点,,,则()A. B. C. D.22.已知为虚数单位,复数,则其共轭复数()A. B. C. D.3.已知,则下列不等式正确的是()A. B.C. D.4.已知集合A={x|x<1},B={x|},则A. B.C. D.5.已知,则不等式的解集是()A. B. C. D.6.已知数列满足:)若正整数使得成立,则()A.16 B.17 C.18 D.197.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.48.已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是()A. B. C. D.9.己知集合,,则()A. B. C. D.10.世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是()A. B. C. D.11.函数且的图象是()A. B.C. D.12.如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,,则()A.1 B. C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.若为假,则实数的取值范围为__________.14.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.15.若,则的最小值为________.16.根据如图的算法,输出的结果是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,.(Ⅰ)求椭圆的方程;(Ⅱ)求证:为定值.18.(12分)设函数,.(Ⅰ)讨论的单调性;(Ⅱ)时,若,,求证:.19.(12分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.20.(12分)在直角坐标系中,曲线的参数方程为(为参数,为实数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为.(1)求线段长的最小值;(2)求点的轨迹方程.21.(12分)已知首项为2的数列满足.(1)证明:数列是等差数列.(2)令,求数列的前项和.22.(10分)如图,空间几何体中,是边长为2的等边三角形,,,,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
在中,由正弦定理得;进而得,在中,由余弦定理可得.【详解】在中,由正弦定理得,得,又,所以为锐角,所以,,在中,由余弦定理可得,.故选:D【点睛】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.2.B【解析】
先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【详解】由,所以其共轭复数.故选:B.【点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.3.D【解析】
利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.【详解】已知,赋值法讨论的情况:(1)当时,令,,则,,排除B、C选项;(2)当时,令,,则,排除A选项.故选:D.【点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.4.A【解析】∵集合∴∵集合∴,故选A5.A【解析】
构造函数,通过分析的单调性和对称性,求得不等式的解集.【详解】构造函数,是单调递增函数,且向左移动一个单位得到,的定义域为,且,所以为奇函数,图像关于原点对称,所以图像关于对称.不等式等价于,等价于,注意到,结合图像关于对称和单调递增可知.所以不等式的解集是.故选:A【点睛】本小题主要考查根据函数的单调性和对称性解不等式,属于中档题.6.B【解析】
计算,故,解得答案.【详解】当时,,即,且.故,,故.故选:.【点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.7.D【解析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题8.B【解析】
由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.9.C【解析】
先化简,再求.【详解】因为,又因为,所以,故选:C.【点睛】本题主要考查一元二次不等式的解法、集合的运算,还考查了运算求解能力,属于基础题.10.C【解析】
列出循环的每一步,可得出输出的的值.【详解】,输入,,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数不成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,成立,跳出循环,输出的值为.故选:C.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.11.B【解析】
先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.【详解】由题可知定义域为,,是偶函数,关于轴对称,排除C,D.又,,在必有零点,排除A.故选:B.【点睛】本题考查了函数图象的判断,考查了函数的性质,属于中档题.12.C【解析】
连接AO,因为O为BC中点,可由平行四边形法则得,再将其用,表示.由M、O、N三点共线可知,其表达式中的系数和,即可求出的值.【详解】连接AO,由O为BC中点可得,,、、三点共线,,.故选:C.【点睛】本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量的共线定理是关键.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由为假,可知为真,所以对任意实数恒成立,求出的最小值,令即可.【详解】因为为假,则其否定为真,即为真,所以对任意实数恒成立,所以.又,当且仅当,即时,等号成立,所以.故答案为:.【点睛】本题考查全称命题与特称命题间的关系的应用,利用参变分离是解决本题的关键,属于中档题.14.【解析】
要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.【详解】取的中点E,连AE,,易证,∴为异面直线与所成角,设等边三角形边长为,易算得∴在∴故答案为【点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.15.【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。【详解】由题意,,当且仅当时等号成立,所以,当且仅当时取等号,所以当时,取得最小值.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件。16.55【解析】
根据该For语句的功能,可得,可得结果【详解】根据该For语句的功能,可得则故答案为:55【点睛】本题考查For语句的功能,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ);(Ⅱ),证明见解析.【解析】
(Ⅰ)根据题意列出关于,,的方程组,解出,,的值,即可得到椭圆的方程;(Ⅱ)设点,,点,,易求直线的方程为:,令得,,同理可得,所以,联立直线与椭圆方程,利用韦达定理代入上式,化简即可得到.【详解】(Ⅰ)解:由题意可知:,解得,椭圆的方程为:;(Ⅱ)证:设点,,点,,联立方程,消去得:,,①,点,,,直线的方程为:,令得,,,,同理可得,,,把①式代入上式得:,为定值.【点睛】本题主要考查直线与椭圆的位置关系、定值问题的求解;关键是能够通过直线与椭圆联立得到韦达定理的形式,利用韦达定理化简三角形面积得到定值;考查计算能力与推理能力,属于中档题.18.(1)证明见解析;(2)证明见解析.【解析】
(1)首先对函数求导,再根据参数的取值,讨论的正负,即可求出关于的单调性即可;(2)首先通过构造新函数,讨论新函数的单调性,根据新函数的单调性证明.【详解】(1),令,则,令得,当时,则在单调递减,当时,则在单调递增,所以,当时,,即,则在上单调递增,当时,,易知当时,,当时,,由零点存在性定理知,,不妨设,使得,当时,,即,当时,,即,当时,,即,所以在和上单调递增,在单调递减;(2)证明:构造函数,,,,整理得,,(当时等号成立),所以在上单调递增,则,所以在上单调递增,,这里不妨设,欲证,即证由(1)知时,在上单调递增,则需证,由已知有,只需证,即证,由在上单调递增,且时,有,故成立,从而得证.【点睛】本题主要考查了导数含参分类讨论单调性,借助构造函数和单调性证明不等式,属于难题.19.(1);(2)【解析】
(1)利用零点分段讨论法可求不等式的解.(2)利用柯西不等式可求的最小值.【详解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(当且仅当时取“=”).所以的最小值为.【点睛】本题考查绝对值不等式的解法以及利用柯西不等式求最值.解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图象法求解时注意图象的正确刻画.利用柯西不等式求最值时注意把原代数式配成平方和的乘积形式,本题属于中档题.20.(1)(2)【解析】
(1)将曲线的方程化成直角坐标方程为,当时,线段取得最小值,利用几何法求弦长即可.(2)当点与点不重合时,设,由利用向量的数量积等于可求解,最后验证当点与点重合时也满足.【详解】解曲线的方程化成直角坐标方程为即圆心,半径,曲线为过定点的直线,易知在圆内,当时,线段长最小为当点与点不重合时,设,化简得当点与点重合时,也满足上式,故点的轨迹方程为【点睛】本题考查了极坐标与普通方程的互化、直线与圆的位置关系、列方程求动点的轨迹方程,属于基础题.21.(1)见解析;(2)【解析】
(1)由原式可得,等式两端同时除以,可得到,即可证明结论;(2)由(1)可求得的表达式,进而可求得的表达式,然后求出的前项和即可.【详解】(1)证明:因为,所以,所以,从而,因为,所以,故数列是首项为1,公差为1的等差数列.(2)由(1)可知,则,因为,所以,则.【点睛】本题考查了等差数列的证明,考查了等差数列及等比数列的前项和公式的应用,考查了学生的计算求解能力,属于中档题.22.(1)证明见解析(2)【解析】
(1)分别取,的中点,,连接,,,,,要证明平面,只需证明面∥面即可.(2)以点为原点,以为轴,以为轴,以为轴,建立空间直角坐标系,分别计算面的法向量,面的法向量可取,并判断二面角为锐角,再利用计算即可.【详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届福建省厦门海沧实验中学高二上数学期末学业水平测试模拟试题含解析
- 2026届西藏日喀则市第四高级中学高三上英语期末达标测试试题含解析
- 辽宁省鞍山市台安县高级中学2026届高三英语第一学期期末统考模拟试题含解析
- 2026届吉林省长春市九台区四中生物高三第一学期期末达标测试试题含解析
- 南昌县莲塘第一中学2026届高一上数学期末复习检测试题含解析
- 2026届上海市五爱中学高一生物第一学期期末达标检测模拟试题含解析
- 福建省福州市长乐高中、城关中学、文笔中学2026届高二生物第一学期期末教学质量检测试题含解析
- 2026届福建省厦门市第一中学生物高一上期末监测试题含解析
- 山东省济南市济钢高级中学2026届生物高一上期末学业质量监测模拟试题含解析
- 天津市重点中学2026届高二生物第一学期期末教学质量检测试题含解析
- 养老机构殡葬协议书
- 蜜雪冰城加盟合同协议
- 10.2 常见的酸和碱(课件)-2024-2025学年九年级化学人教版下册
- 2024电力智能录波器技术规范
- 《中国慢性阻塞性肺疾病基层诊疗与管理指南(2024年)》解读课件
- 暨南大学《法理学》2023-2024学年第一学期期末试卷
- 小学课后服务经费管理方案
- 道路绿化养护道路绿化养护方案
- DL-T 5117-2021水下不分散混凝土试验规程-PDF解密
- 宝马购车合同
- 神经内科品管圈成果汇报-提高脑卒中偏瘫患者早期自我肢体功能锻炼规范执行率
评论
0/150
提交评论