版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学必修⑤《数列》
单元总结复习一、知识回顾仍成等差仍成等比等差数列等比数列定义通项通项推广中项性质求和公式关系式适用所有数列Ⅰ、等差、等比数列的设法及应用1.三个数成等差数列可设为
或者,2.三个数成等比数列,则这三个数可设为,也可以设为
例1(1).已知三个数成等差数列,其和为15,其平方和为83,求此三个数.析:设这三个数为则∴所求三个数分别为3,5,7解得x=5,d=或7,5,3.±2.二、知识应用根据具体问题的不同特点而选择不同设法。Ⅱ、运用等差、等比数列的性质例2(1)已知等差数列满足,则()(3)已知在等差数列{an}的前n项中,前四项之和为21,后四项之和为67,前n项之和为286,试求数列的项数n.析:C
(2)已知等差数列前项和为30,前项和为100,则前项和为()C例3.等差数列{an}中,a1<0,S9=S12,该数列前多少项的和最小?分析:如果等差数列{an}由负数递增到正数,或者由正数递减到负数,那么前n项和Sn有如下性质:1.当a1<0,d>0时,2.当a1>0,d<0时,思路1:寻求通项∴n取10或11时Sn取最小值即:易知由于Ⅲ、等差数列的最值问题例3.等差数列{an}中,a1<0,S9=S12,该数列前多少项的和最小?分析:等差数列{an}的通项an是关于n的一次式,前项和Sn是关于n的二次式(缺常数项).求等差数列的前n项和Sn的最大最小值可用解决二次函数的最值问题的方法.思路2:从函数的角度来分析数列问题.设等差数列{an}的公差为d,则由题意得:∵a1<0,∴d>0,∵d>0,∴Sn有最小值.又∵n∈N*,∴n=10或n=11时,Sn取最小值即:例3.等差数列{an}中,a1<0,S9=S12,该数列前多少项和最小?分析:数列的图象是一群孤立的点,数列前n项和Sn
的图象也是一群孤立的点.此题等差数列前n项和Sn的图象是在抛物线上一群孤立的点.求Sn的最大最小值即要求距离对称轴最近的正整数n.因为S9=S12,又S1=a1<0,所以Sn
的图象所在的抛物线的对称轴为直线n=(9+12)÷2=10.5,所以Sn有最小值∴数列{an}的前10项或前11项和最小nSnon=10.5类比:二次函数f(x),若f(9)=f(12),则函数f(x)图象的对称轴为直线x=(9+12)÷2=10.5若f(x+2)=f(2-x),则函数f(x)图象的对称轴为直线x=2思路3:函数图像、数形结合令故开口向上过原点抛物线1.分组求和法:
若数列的通项可转化为
的形式,且数列可求出前n项和则例3.求下列数列的前n项和(1)
解(1):该数列的通项公式为
小活页P31例1例5、Sn=++……+11×313×51(2n-1)×(2n+1)[分析]:观察数列的前几项:1(2n-1)×(2n+1)=(-)212n-112n+11这时我们就能把数列的每一项裂成两项再求和,这种方法叫什么呢?裂项相消法11×3=(-213111)例5、Sn=++……+11×313×51(2n-1)×(2n+1)解:由通项an=1(2n-1)×(2n+1)=(-)212n-112n+11∴Sn=
(-+-+……+-)21311151312n-112n+11=(1-)212n+112n+1n=评:裂项相消法的关键就是将数列的每一项拆成二项或多项使数列中的项出现有规律的抵消项,进而达到求和的目的。2.拆项相消法(或裂项法):若数列的通项公式拆分为某数列相邻两项之差的形式即:
或()则可用如下方法求前n项和.
常见的拆项公式有:例4、求和Sn=1+2x+3x2+……+nxn-1(x≠0,1)[分析]这是一个等差数列{n}与一个等比数列{xn-1}的对应相乘构成的新数列,这样的数列求和该如何求呢?Sn=1+2x+3x2
+……+nxn-1①
xSn=x+2x2
+……+(n-1)xn-1+nxn②(1-x)Sn=1+x+x2+……+xn-1-
nxnn项这时等式的右边是一个等比数列的前n项和与一个式子的和,这样我们就可以化简求值。错位相减法例4、求和Sn=1+2x+3x2++nxn-1(x≠0,1)解:∵Sn=1+2x+3x2++nxn-1∴xSn=x+2x2++(n-1)xn-1+nxn∴①-②,得:(1-x)
Sn=1+x+x2++xn-1-
nxn∴Sn=1-(1+n)xn+nxn+1(1-x)21-xn1-x=-
nxn………………3.错位相减法:设数列是公差为d的等差数列(d不等于零),数列是公比为q的等比数列(q不
等于1),数列满足:则的前n项和为:练习:求和Sn=1/2+3/4+5/8+……+(2n-1)/2n答案:Sn=3-2n+32n求和Sn=1/2+3/4+5/8+……+(2n-1)/2n
设等差数列{an}的公差为d,等比数列{bn}的公比为,则由题意得解析:通项特征:由等差数列通项与等比数列通项相乘而得求和方法:错位相减法——错项法例4已知数列{an}是等差数列,数列{bn}是等比数列,又a1=b1(1)求数列{an}及数列{bn}的通项公式;(2)设cn=anbn求数列{cn}的前n项和Sn=1
,a2b2=2,a3b3=.Ⅳ、等差、等比数列的综合应用
解析:两式相减:错位相减法1.观察数列:30,37,32,35,34,33,36,(),38的特点,在括号内适当的一个数是______2.在等比数列中,a4+a6=3,则a5(a3+2a5+a7)=_____3.在等差数列{an}中,若a4+a6+a8+a10+a12=120,则2a10-a12的值为()A.20B.22C.24D.28319C4.已知数列{an}中,a1=1,并且3an+1-3an=1,则a301=()A.100B.101C.102D.103B5.若{an}是等比数列,且an>0,a2a4+2a3a5+a4a6=25,那
么a3+a5的值等于()A.5B.1C.15D.10A三、基础练习6.等差数列{an}中,已知前4项和是1,前8项和是4,则a17+a18+a19+a20的值等于()A.7B.8C.9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026重庆两江新区人民医院招聘4人考试参考题库及答案解析
- 2026遂宁大英农商银行寒假实习生招聘考试参考试题及答案解析
- 2026江苏苏州张家港农商银行寒假实习招募考试备考题库及答案解析
- 2026云南西双版纳州中级人民法院第一次招聘聘用制审判辅助人员1人考试备考题库及答案解析
- 2026江苏中国药科大学智能药学交叉研究院工作人员招聘5人考试备考试题及答案解析
- 2026年甘肃省天水市清水县秦亭镇中心卫生院编外人员招录考试备考题库及答案解析
- 2026年齐齐哈尔讷河市人民医院招聘3人考试备考题库及答案解析
- 2026陆军工程大学社会招聘8人考试参考题库及答案解析
- 2026年甘肃省承仁中医药研究所诚聘医护20人考试备考题库及答案解析
- 2026湖南岳阳市屈原管理区数据局编外人员招聘2人考试参考试题及答案解析
- 紫砂陶制品行业深度研究分析报告(2024-2030版)
- 餐饮公司监控管理制度
- 种鸡免疫工作总结
- 河南省商丘市柘城县2024-2025学年八年级上学期期末数学试题(含答案)
- 教育机构财务管理制度及报销流程指南
- 给女朋友申请书
- 2023-2024学年北京市海淀区八年级上学期期末考试物理试卷含详解
- 2024版房屋市政工程生产安全重大事故隐患判定标准内容解读
- GB 21258-2024燃煤发电机组单位产品能源消耗限额
- 智能法理学习通超星期末考试答案章节答案2024年
- JB∕T 13026-2017 热处理用油基淬火介质
评论
0/150
提交评论