2023届山东省临沂市沂南县高考数学考前最后一卷预测卷含解析_第1页
2023届山东省临沂市沂南县高考数学考前最后一卷预测卷含解析_第2页
2023届山东省临沂市沂南县高考数学考前最后一卷预测卷含解析_第3页
2023届山东省临沂市沂南县高考数学考前最后一卷预测卷含解析_第4页
2023届山东省临沂市沂南县高考数学考前最后一卷预测卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.2.下列函数中,值域为的偶函数是()A. B. C. D.3.已知复数,则()A. B. C. D.4.由曲线y=x2与曲线y2=x所围成的平面图形的面积为()A.1 B. C. D.5.设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是()A.是偶函数 B.是奇函数C.是奇函数 D.是奇函数6.等差数列中,已知,且,则数列的前项和中最小的是()A.或 B. C. D.7.已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,,则球的表面积为()A. B. C. D.8.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为()A.2 B. C.6 D.89.如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则双曲线的离心率是().A. B. C. D.10.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是()A. B.C. D.11.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是().A. B. C. D.12.若函数有且只有4个不同的零点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从2、3、5、7、11、13这六个质数中任取两个数,这两个数的和仍是质数的概率是________(结果用最简分数表示)14.设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为______.15.在直角坐标系中,已知点和点,若点在的平分线上,且,则向量的坐标为___________.16.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.18.(12分)在中,角的对边分别为.已知,且.(1)求的值;(2)若的面积是,求的周长.19.(12分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求证:20.(12分)如图,在四棱锥中,四边形是直角梯形,底面,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.21.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:组别男235151812女051010713(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:红包金额(单位:元)1020概率现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)某企业生产一种产品,从流水线上随机抽取件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损元,优等品每件盈利元,特优品每件盈利元,以这件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.(1)求每件产品的平均销售利润;(2)该企业主管部门为了解企业年营销费用(单位:万元)对年销售量(单位:万件)的影响,对该企业近年的年营销费用和年销售量,数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中,,,.根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.①求关于的回归方程;②用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益销售利润营销费用,取)附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【点睛】本道题考查了抛物线的基本性质,难度中等.2、C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.考点:1、函数的奇偶性;2、函数的值域.3、B【解析】

利用复数除法、加法运算,化简求得,再求得【详解】,故.故选:B【点睛】本小题主要考查复数的除法运算、加法运算,考查复数的模,属于基础题.4、B【解析】

首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.【详解】联立方程:可得:,,结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为:.本题选择B选项.【点睛】本题主要考查定积分的概念与计算,属于中等题.5、C【解析】

根据函数奇偶性的性质即可得到结论.【详解】解:是奇函数,是偶函数,,,,故函数是奇函数,故错误,为偶函数,故错误,是奇函数,故正确.为偶函数,故错误,故选:.【点睛】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.6、C【解析】

设公差为,则由题意可得,解得,可得.令

,可得

当时,,当时,,由此可得数列前项和中最小的.【详解】解:等差数列中,已知,且,设公差为,

则,解得

,.

,可得,故当时,,当时,,

故数列前项和中最小的是.故选:C.【点睛】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.7、D【解析】

由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解.【详解】由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱锥,又由,所以,在直角中,因为,所以,设外接球的半径为,在中,可得,即,解得,所以外接球的表面积为.故选:D.【点睛】本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.8、A【解析】

先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A【点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.9、C【解析】

易得,,又,平方计算即可得到答案.【详解】设双曲线C的左焦点为E,易得为平行四边形,所以,又,故,,,所以,即,故离心率为.故选:C.【点睛】本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中档题.10、D【解析】

根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可.【详解】由条件可得函数关于直线对称;在,上单调递增,且在时使得;又,,所以选项成立;,比离对称轴远,可得,选项成立;,,可知比离对称轴远,选项成立;,符号不定,,无法比较大小,不一定成立.故选:.【点睛】本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.11、B【解析】

求出在的解析式,作出函数图象,数形结合即可得到答案.【详解】当时,,,,又,所以至少小于7,此时,令,得,解得或,结合图象,故.故选:B.【点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.12、B【解析】

由是偶函数,则只需在上有且只有两个零点即可.【详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

依据古典概型的计算公式,分别求“任取两个数”和“任取两个数,和是质数”的事件数,计算即可。【详解】“任取两个数”的事件数为,“任取两个数,和是质数”的事件有(2,3),(2,5),(2,11)共3个,所以任取两个数,这两个数的和仍是质数的概率是。【点睛】本题主要考查古典概型的概率求法。14、【解析】

采用数形结合,计算以及,然后根据椭圆的定义可得,并使用余弦定理以及,可得结果.【详解】如图由,所以由,所以又,则所以所以化简可得:则故答案为:【点睛】本题考查椭圆的定义以及余弦定理的使用,关键在于根据角度求出线段的长度,考查分析能力以及计算能力,属中档题.15、【解析】

点在的平分线可知与向量共线,利用线性运算求解即可.【详解】因为点在的平线上,所以存在使,而,可解得,所以,故答案为:【点睛】本题主要考查了向量的线性运算,利用向量的坐标求向量的模,属于中档题.16、【解析】试题分析:从编号分别为1,1,3,4,5的5个红球和5个黑球,从中随机取出4个,有种不同的结果,由于是随机取出的,所以每个结果出现的可能性是相等的;设事件为“取出球的编号互不相同”,则事件包含了个基本事件,所以.考点:1.计数原理;1.古典概型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】

(1)由已知可得,构造等比数列即可求出通项公式;(2)当时,由,可求,时,由,可证,验证时,不等式也成立,即可得证.【详解】(1)由可得,,即,所以,解得,(2)当时,,,当时,,综上,由可得递增,,时;所以,综上:故.【点睛】本题主要考查了递推数列求通项公式,利用放缩法证明不等式,涉及等比数列的求和公式,属于难题.18、(1);(2)【解析】

(1)由正弦定理可得,,化简并结合,可求得三者间的关系,代入余弦定理可求得;(2)由(1)可求得,再结合三角形的面积公式,可求出,从而可求出答案.【详解】(1)因为,所以,整理得:.因为,所以,所以.由余弦定理可得.(2)由(1)知,则,因为的面积是,所以,即,解得,则.故的周长为:.【点睛】本题考查了正弦定理、余弦定理在解三角形中的应用,考查了三角形面积公式的应用,属于基础题.19、(1);(2)见解析.【解析】

(1)将问题转化为对任意恒成立,换元构造新函数即可得解;(2)结合(1)可得,令,求导后证明其导函数单调递增,结合,即可得函数的单调区间和最小值,即可得证.【详解】(1)对任意恒成立等价于对任意恒成立,令,,则,当时,,单调递增;当时,,单调递减;有最大值,.(2)证明:由(1)知,当时,即,,,令,则,令,则,在上是增函数,又,当时,;当时,,在上是减函数,在上是增函数,,即,.【点睛】本题考查了利用导数解决恒成立问题,考查了利用导数证明不等式,考查了计算能力和转化化归思想,属于中档题.20、(1)见解析;(2).【解析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.试题解析:(Ⅰ)平面平面因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面.(Ⅱ)如图,以点为原点,分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则取,则为面法向量.设为面的法向量,则,即,取,则依题意,则.于是.设直线与平面所成角为,则即直线与平面所成角的正弦值为.21、(1)不能;(2)①;②分布列见解析,.【解析】

(1)根据题目所给的数据可求2×2列联表即可;计算K的观测值K2,对照题目中的表格,得出统计结论.(2)由相互独立事件的概率可得男“环保达人”又有女“环保达人”的概率:P=1﹣()3﹣()3,解出X的分布列及数学期望E(X)即可;【详解】(1)由图中表格可得列联表如下:非“环保关注者”是“环保关注者”合计男104555女153045合计2575100将列联表中的数据代入公式计算得K”的观测值,所以在犯错误的概率不超过0.05的前提下,不能认为是否为“环保关注者”与性别有关.(2)视频

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论