版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数图像可能是()A. B. C. D.2.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是()A. B. C. D.3.若复数,其中为虚数单位,则下列结论正确的是()A.的虚部为 B. C.的共轭复数为 D.为纯虚数4.《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差D.乙的六大素养整体平均水平优于甲5.已知实数集,集合,集合,则()A. B. C. D.6.的展开式中的系数为()A.5 B.10 C.20 D.307.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.8.已知复数满足,则()A. B. C. D.9.函数在的图象大致为()A. B.C. D.10.设为锐角,若,则的值为()A. B. C. D.11.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为()A. B. C. D.12.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知三棱锥中,,,则该三棱锥的外接球的表面积是________.14.已知“在中,”,类比以上正弦定理,“在三棱锥中,侧棱与平面所成的角为、与平面所成的角为,则________.15.已知数列递增的等比数列,若,,则______.16.已知复数对应的点位于第二象限,则实数的范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.(1)求抛物线的方程;(2)若,直线与交于点,,求直线的斜率.18.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,19.(12分)某中学为研究学生的身体素质与体育锻炼时间的关系,对该校名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均体育锻炼时间在的学生评价为“锻炼达标”.(1)请根据上述表格中的统计数据填写下面列联表:并通过计算判断,是否能在犯错误的概率不超过的前提下认为“锻炼达标”与性别有关?(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出人,进行体育锻炼体会交流.(i)求这人中,男生、女生各有多少人?(ii)从参加体会交流的人中,随机选出人发言,记这人中女生的人数为,求的分布列和数学期望.参考公式:,其中.临界值表:0.100.050.0250.01002.7063.8415.0246.63520.(12分)记为数列的前项和,已知,等比数列满足,.(1)求的通项公式;(2)求的前项和.21.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:月份1月2月3月4月5月6月7月8月月养殖量/千只33456791012月利润/十万元3.64.14.45.26.27.57.99.1生猪死亡数/只293749537798126145(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,参考数据:.22.(10分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)从该地区城镇居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.2、B【解析】
由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.3、D【解析】
将复数整理为的形式,分别判断四个选项即可得到结果.【详解】的虚部为,错误;,错误;,错误;,为纯虚数,正确本题正确选项:【点睛】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.4、D【解析】
根据雷达图对选项逐一分析,由此确定叙述正确的选项.【详解】对于A选项,甲的数据分析分,乙的数据分析分,甲低于乙,故A选项错误.对于B选项,甲的建模素养分,乙的建模素养分,甲低于乙,故B选项错误.对于C选项,乙的六大素养中,逻辑推理分,不是最差,故C选项错误.对于D选项,甲的总得分分,乙的总得分分,所以乙的六大素养整体平均水平优于甲,故D选项正确.故选:D【点睛】本小题主要考查图表分析和数据处理,属于基础题.5、A【解析】
可得集合,求出补集,再求出即可.【详解】由,得,即,所以,所以.故选:A【点睛】本题考查了集合的补集和交集的混合运算,属于基础题.6、C【解析】
由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.【详解】由已知,,因为展开式的通项为,所以展开式中的系数为.故选:C.【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.7、C【解析】
由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.8、A【解析】
根据复数的运算法则,可得,然后利用复数模的概念,可得结果.【详解】由题可知:由,所以所以故选:A【点睛】本题主要考查复数的运算,考验计算,属基础题.9、B【解析】
先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案.【详解】是奇函数,排除C,D;,排除A.故选:B.【点睛】本题考查函数图象的判断,属于常考题.10、D【解析】
用诱导公式和二倍角公式计算.【详解】.故选:D.【点睛】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.11、B【解析】
先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【详解】因为,都是区间上的均匀随机数,所以有,,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.12、A【解析】
画出不等式组表示的区域,求出其面积,再得到在区域内的面积,根据几何概型的公式,得到答案.【详解】画出所表示的区域,易知,所以的面积为,满足不等式的点,在区域内是一个以原点为圆心,为半径的圆面,其面积为,由几何概型的公式可得其概率为,故选A项.【点睛】本题考查由约束条件画可行域,求几何概型,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,求得的值,然后利用球体表面积公式可求得结果.【详解】将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,则,由勾股定理可得,上述三个等式全部相加得,,因此,三棱锥的外接球面积为.故答案为:.【点睛】本题考查三棱锥外接球表面积的计算,根据三棱锥对棱长相等将三棱锥补成长方体是解答的关键,考查推理能力,属于中等题.14、【解析】
类比,三角形边长类比三棱锥各面的面积,三角形内角类比三棱锥中侧棱与面所成角.【详解】,故,【点睛】本题考查类比推理.类比正弦定理可得,类比时有结构类比,方法类比等.15、【解析】
,建立方程组,且,求出,进而求出的公比,即可求出结论.【详解】数列递增的等比数列,,,解得,所以的公比为,.
故答案为:.【点睛】本题考查等比数列的性质、通项公式,属于基础题.16、【解析】
由复数对应的点,在第二象限,得,且,从而求出实数的范围.【详解】解:∵复数对应的点位于第二象限,∴,且,∴,故答案为:.【点睛】本题主要考查复数与复平面内对应点之间的关系,解不等式,且是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)0【解析】
(1)根据题意,设直线,与联立,得,再由弦长公式,求解.(2)设,根据直线的斜率为1,则,得到,再由,所以线段中点的纵坐标为,然后直线的方程与直线的方程联立解得交点H的纵坐标,说明直线轴,直线的斜率为0.【详解】(1)依题意,,则直线,联立得;设,则,解得,故抛物线的方程为.(2),因为直线的斜率为1,则,所以,因为,所以线段中点的纵坐标为.直线的方程为,即①直线的方程为,即②联立①②解得即点的纵坐标为,即直线轴,故直线的斜率为0.如果直线的斜率不存在,结论也显然成立,综上所述,直线的斜率为0.【点睛】本题考查抛物线的方程、直线与抛物线的位置关系,还考查推理论证能力以及化归与转化思想,属于中档题.18、(1)列联表见解析,有把握;(2)分布列见解析,.【解析】
(1)根据频率分布直方图补全列联表,求出,从而有的把握认为该校教职工是否为“冰雪迷”与“性别”有关.(2)在全校“冰雪迷”中按性别分层抽样抽取6名,则抽中男教工:人,抽中女教工:人,从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,则的可能取值为0,1,2,分别求出相应的概率,由此能求出的分布列和数学期望.【详解】解:(1)由题意得下表:男女合计冰雪迷402060非冰雪迷202040合计6040100的观测值为所以有的把握认为该校教职工是“冰雪迷”与“性别”有关.(2)由题意知抽取的6名“冰雪迷”中有4名男职工,2名女职工,所以的可能取值为0,1,2.且,,,所以的分布列为012【点睛】本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查古典概型、排列组合、频率分布直方图的性质等基础知识,考查运算求解能力,属于中档题.19、(1)能;(2)(i)男生有人,女生有人;(ii),分布列见解析.【解析】
(1)根据所给数据可完成列联表.由总人数及女生人数得男生人数,由表格得达标人数,从而得男生中达标人数,这样不达标人数随之而得,然后计算可得结论;(2)由达标人数中男女生人数比为可得抽取的人数,总共选2人,女生有4人,的可能值为0,1,2,分别计算概率得分布列,再由期望公式可计算出期望.【详解】(1)列出列联表,,所以在犯错误的概率不超过的前提下能判断“课外体育达标”与性别有关.(2)(i)在“锻炼达标”的学生中,男女生人数比为,用分层抽样方法抽出人,男生有人,女生有人.(ii)从参加体会交流的人中,随机选出人发言,人中女生的人数为,则的可能值为,,,则,,,可得的分布列为:可得数学期望.【点睛】本题考查列联表与独立性检验,考查分层抽样,随机变量的概率分布列和期望.主要考查学生的数据处理能力,运算求解能力,属于中档题.20、(1)(2)当时,;当时,.【解析】
(1)利用数列与的关系,求得;(2)由(1)可得:,,算出公比,利用等比数列的前项和公式求出.【详解】(1)当时,,当时,,因为适合上式,所以.(2)由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年河南普高单招试题附答案
- 2026年开封大学单招职业适应性测试题库附答案
- 2026年安徽医学高等专科学校单招职业倾向性考试模拟测试卷附答案
- 2026年南阳农业职业学院单招职业适应性考试模拟测试卷附答案
- 2026年广东省清远市单招职业倾向性测试模拟测试卷及答案1套
- 2026年石家庄城市经济职业学院单招职业倾向性测试题库及答案1套
- 2026年广东省河源市单招职业适应性考试题库附答案
- 2026山东威海市智慧谷实验幼儿园招聘1人笔试备考试题及答案解析
- 2026广东中山市阜沙镇阜沙中学、阜沙中心小学、牛角小学招聘非编教师7人笔试模拟试题及答案解析
- 2025年安庆宿松县铁寨村村级后备干部招考1人备考题库附答案
- 叔叔在侄子订婚宴致辞
- 自信自卑主题班会
- 2023上海物理水平等级考+答案
- YY/T 1718-2020人类体外辅助生殖技术用医疗器械胚胎移植导管
- GB/T 3853-2017容积式压缩机验收试验
- GB/T 28837-2012木质包装检疫处理服务质量要求
- GA/T 1380-2018法庭科学DNA数据库人员样本采集规范
- 铜盐加速醋酸盐雾试验标准
- 刑法总论全套课件
- 信息技术七年级下册活动2 IP地址与域名市公开课一等奖省名师优质课赛课一等奖课件
- 医院精细化管理
评论
0/150
提交评论