内容案例上学期beamlecture risk_第1页
内容案例上学期beamlecture risk_第2页
内容案例上学期beamlecture risk_第3页
内容案例上学期beamlecture risk_第4页
内容案例上学期beamlecture risk_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

BEAM047FUNDAMENTALSOFFINANCIALTom Lecture9:RiskManagement:AnIntroductiontoTimevalueandintrinsicvalueThefactorsaffectingoptionprices价ThebinomialoptionpricingTheBlack-ScholesoptionpricingmodelFuturesRiskBrigham,E.,andHouston,J.,(2010)FundamentalsofFinancial(CustomEdition).SouthWesternCengageLearning.Chapter ShouldfirmshedgetheriskoftheircashInprinciple,welldiversifiedinvestorscareonlyaboutmarketrisk,sinceitisonlythisthatcontributestotheriskoftheiroveralldiversifiedportfolio,andsocorporatehedgingshouldnotaffectthevalueoftheirinvestmentInpractice,however,therearevariousreasonswhyafirmmaychoosetohedgeidiosyncraticrisk非系统风险,includingreducingthevolatility波动性of e,reducingtheprobabilityoffinancialdistress,increaseddebtcapacity借债能力,bettermanagerialcompensation补偿systems,andcomparative比较advantagesinThemostimportanttoolusedbycorporationsforhedgingriskisthederivativesecurity(orjustderivative),includingforward远期合同contract,futurescontract合同,option,swap互惠,etcItisasecuritywhosevaluedependsonthevalueofoneormoreunderlyingassetsincludingfinancialsecurities(e.g.stocks,interestrates),agriculturalproducts(e.g.wheat,cotton),preciousmetals贵金属(e.g.gold,silver),rawmaterials原材料(e.g.steel,stic),theweather(e.g.temperature,snowfall),macroeconomicindicators(e.g.inflation),volatilityandotherderivatives(e.g.futuresonoptions,optionsonswaps)Inadditiontohedging,derivativescanalsobeusedforspeculation投机,sometimeswithdisastrousconsequences(forexample,LTCM,BaringsBank)LTCM——Long-TermCapital Long-TermCapitalManagement(LTCM)wasthelargesthedgefund对冲基金($126billioninassets)thatnearlycollapsed价格inlateTheprincipalshareholderswereNobelprize-winningeconomistsMyronScholesandRobertMerton.LTCM'sinvestmentstrategieswerebaseduponhedgingagainstarangeofvolatilityinforeigncurrenciesandbonds.WhenRussiadeclared声itwasdefaultingonitsbonds,LTCM'sriskytradesbroughtitclosetobankruptcy.TheFederalReservehadtotakestepstobailitBaringsBank(1762- ‘OnJanuary171995theHanshinearthquakestruckKobe,Japan,killing6,425peopleandcausinginsuredlossesof$2.716bn. Asaresult,BaringstraderNickLeesonfacedseriousproblems. Inhisroleasawriterofso-called“straddles”...ontheNikkei225index,hehadbeenspeculatingthattheindexwouldnotmovesignificantlyoutofitstradingrange... TheearthquakeresultedintheNikkei255shedding11%andtheconsequencesforLeesonarewellknown: on26February1995,Barings,theUK’soldestmerchantbankinggroup,wascedinMasteringRisk,20June,2000,Part9WarrenBuffetonExcerptsfromtheBerkshireHathawayannualreportfor‘Iviewderivativesastimebombs,bothforthepartiesthatdealinthemandtheeconomicsystem.’‘Inmyview,derivativesarefinancialweaponsofmassdestruction,carryingdangersthat,whilenowlatent,arepotentiallylethal.’ A Derivativescanbetradedover-the-counter场易、柜台卖买(i.e.directlynegotiatedbetweentwoindividuals)oronanexchangeThemostimportantexchangesforderivativestradingareIntercontinentalExchange(whichincludesLIFFE,TheLondonInternationalFinancialFuturesandOptionsExchange),TheChicagoBoardofTrade(CBOT)DerivativesmarketshavegrownmorerapidlythanothermajormarketsinrecentOptionsAnoptiononastockisasecuritythatgivestheholdertherighttobuyorselloneshareofthestockonorbeforeaparticulardateforapredeterminedprice预先约定价格.Acalloption看涨givestheholdertherighttobuythestockwhileaputoption看跌thatgivestheholdertherighttoselltheTheexerciseprice(orstrikeprice执行价isthepriceatwhichtheholdercanbuyorselltheunderlyingstockTheexpirationdateisthedateonorbeforewhichtheholdercanbuyorselltheunderlyingstock;conventionaloptionsaregenerallywrittenforafewmonths;Long-termEquityiciPationSecurities(LEAPS)havematuritiesofuptothreeyearsAEuropeanoption欧式canonlybeexercisedon以控制theexpiration期满whileanAmericanoptioncanbeexercisedatanytimebeforematurity到期Acoveredoption有抵iswhereaninvestorwhosellsacalloptionownstheunderlyingstock,whileanakedoption无担保isonewheretheinvestordoesn’townthestockAnout-of-the-money外在价值optionisonewhichwouldresultinalossifexercisedimmedia y,whileanin-the-money内在价值optionisonewhichwouldresultinaprofitTimevalueandintrinsic AcalloptiongivestherighttobuyanassetwhosevalueiscurrentlyS,fortheexercisepriceXIftheoptionwereexercisednowitwouldgenerateanimmediatecashflowofS–X thentheoptionwouldnotbeexercisedandsoitsvaluewouldbezeroTheintrinsicvalueofacalloptionisthereforeequalThereissomechancethatthevalueoftheassetwillrisebeforetheexpiryoftheoption;thereisalsosomechancethatitwillfall,butthevalueoftheoptionisboundedfrombelowThereforethevalueoftheoptionwillgenerallyexceeditsintrinsicvalue;thedifferenceisthetimevalueoftheoptionOptionpremium溢价=intrinsicvalue+timeAtexpiry期满timevalueiszeroandthevalueoftheoptionisexactlyequaltoitsintrinsicvalueSimilarly,theintrinsicvalueofaputoptionisequaltomax(XProfits/LossesonBasicXX

Buya

XX

Buya

Sella

SellaXXXXAstraddle:buyacallandbuyaThefactorsaffectingoption Shareprice:thehighertheshareprice,thehigherthepriceofacallandthelowerthepriceofaputoptionExerciseprice:thehighertheexerciseprice,thelowerthepriceofacalloptionandthehigherthepriceofaputoptionTimetomaturity到期thelongerthetimetomaturity,thehigherthepriceofbothcallandputoptionsThefactorsaffectingoption Volatilityofthesharepricethehigherthevolatilityoftheshareprice,thehigherthepriceofbothcallandputoptions rateofinterest:thehighertherisk rateofinterest,thehigherthepriceofcalloptionsandthelowerthepriceofputoptionsThedividendspaidbythesharethehigherthedividendspaidbytheshare,thelowerthepriceofacalloptionandthehigherthepriceofaputoptionThefactorsaffectingoption AsummaryofthefactorsaffectingoptionpricesisasTheobjectiveofoptionpricingistoestablishthefunctionalformofThetwomostimportantoptionpricingmodelsarethebinomialmodelandtheBlack-ScholesmodelThebinomialoptionpricing Thebinomialoption-pricingmodelisprobablythemostwidelyusedoption-pricingmodelThebinomialmodelassumesthatovershortperiodsoftime,thesharepricemoveseitherupordownbyfixedproportions固定比例Theresulting‘tree’forthesharepriceimpliesaunique‘tree’fortheoptionpriceThenatureoftheoptioncontractdeterminesthevalueoftheoptionattheterminalnodesofthetreeThebinomialoptionpricing No-arbitrage无argumentscanthenbeusedtofindtheequilibriumpriceoftheoptionatearliernodesofthetreeByworkingbackwards逆向作业wecanthereforededucetheequilibriumpriceoftheoptionatthecurrentdateThebinomialmodelcanbeeasilyprogrammedinExcelorVisualBasicandcanbeadaptedtonumerous,andoftenquitecomplicated,option-pricingproblemsTheoneperiodbinomialConsiderasimpleoneperiodmodel:Todayisdate0andtomorrowisdate1Thereisanon-dividendpayingstockwhosepriceattime0isequaltoSandaEuropeancalloptiononthestockwhose(unknown)valueattime0isCAtdate1,thestockpricewilleitherrisetoSu=S(1+U)orwillfallTheperperiod(simple)interestrateisr,whereThecalloptionexpiresatdate1andhasanexercisepriceForexample,assumeS=U=D=-r=X=Theoneperiodbinomial WecanconstructabinomialtreeforthestockpriceasfollowsTheoptionpricenextperiodisgivenbytheirexpirationvalues

Ourobjectiveistofindtheequilibriumpriceoftheoption,CCreatea portfoliothatislong sharesandshortin1Thecurrentvalueofthisportfolio

Nextperiodtheportfoliowillbe

Now,considerthevalue that ,i.e.so

Cd

CdS(1U)S(1 SuSThisportfolioisrisklessandmustthereforeearntheriskrate,S

1ThiscanbesolvedtoyieldthecurrentoptionqCu(1q)Cd

qrC1

UD,Thevaluesoftheoptionatdate1,expiration

Cd,aregivenbyThevaluesqand1–qareknownasrisk-neutralprobabilitiesTheoneperiodbinomial Theoneperiodbinomialmodelcanbeeasilyextendedtothemulti-period多周期Workingbackwards,eachperiodtheoptionpriceiscalculatedasthepresentvalueoftheexpectedoptionpricethefollowingperiod,usingtheriskneutralprobabilitiesandthe ReplicatingportfolioCombinethestockandarisk- bondtoreplicatethecalloption’scashflows.HoldΔsharesofstockandhaveBpoundsinvestedinthebondearningrisklessraterorborrowBpoundswithrisklessrater. Cu=max(0,Su-X) Cd=max(0,Sd–Thecurrentvalueoftheportfolio=Letthevalueoftheportfoliooneperiodlatermatchtwo esofthecalloption.i.e.ΔS(1+U)+B(1+r)= ΔS(1+D)+B(1+r)=Solvethe cucd,

BS

ThepresentvalueofthecallmusthavethesameValueasthereplicatedC

BTheBlack-Scholes Thebinomialmodelassumesthatineach(discrete分散的period,thesharepricemoveseitherupordownbydiscreteamountsBlackandScholes(1973)derivedanoptionpricingmodelthatassumesinsteadthatthesharepricemovescontinuouslyTheadvantageofthisformulationisthatitpermitsthederivationofaclosedformsolutiontothepriceofanoptionthatisveryeasytoTheBlack-Scholes AlthoughderivedforEuropeancallandputoptionsonnon-dividendpayingstocks,itoftenprovidesanadequate充足的approximationtothepriceofmorecomplicated复杂的AcentralassumptionoftheBlack-ScholesmodelisthatstockarelognormallyThismeansthattheinstantaneousreturnfromholdingasharestockbetweentimetandtimet

isnormallydistributed,

dt)TheBlack-ScholesConsideranon-dividendpayingstockwhosepriceislognormallyTheBlack-ScholesmodelyieldsthefollowingformulaeforthepriceofEuropeancallandputoptionsonthestock Tln(S/X)(r2/ ln(S/(XerT))2T/ ln(S/(XerT T d1 d2d1

ln(S/(XerT))T TT TwhereN(.)denotesthecumulativestandardnormalTheBlack-ScholesTheBlack-ScholesformulaeforcallandputpricesareeasilyimplementedinExcelAforwardcontractisacontractmadeattime0,tobuyorsellanassetorgoodatsometimeinthefuture,T,ontermsagreedattime0Thetermsincludethety,quality,priceanddeliveryAforwardcontractisthereforeacontractforforwarddelivery远期交货ratherthanspotdelivery当场;themarketforspotdeliveryiscalledthespotmarket,whilethemarketforforwarddeliveryiscalledtheforwardmarketThecontractisusuallysettledonthedeliverydate;forwardcontractsareusuallymadeoncommodities商品suchaswheatorsugar,butmayalsobemadeonfinancialassets,suchasforeigncurrenciesorinterestratesAninvestorwhoentersintoaforwardcontacttobuytheassetislonginthecontract,whileaninvestorwhoentersintoaforwardcontracttoselltheassetisshortinthecontractExpostitisalwaysthecasethatitwouldhavebeenbetterforoneofthecounterpartiesnottohaveenteredintotheforwardcontractbuttohavewaitedandthendealtinthespotmarketinsteadNevertheless,exante,itmustbedesirableforbothcounterpartiestoenterintotheforwardcontractTheforward Wefirstassumethattherearenotransactionscosts费用,nostoragecosts仓储成本nocreditriskandthattheassetsorgoodsarecontinuouslydivisible;thesimpleriskrateofinterestisassumedtobeaconstant,r;weassumethatthereisnocosttoenteringintoaforwardcontractThecurrentspotpriceoftheassetis

andweareinterestedinforwardpriceattime0fordeliveryattime

F(0,TSupposethataninvestorbuysoneunitoftheassetinthespotatthespotprice,S0,andsimultaneouslyentersintoacontracttodelivertheassetattimeT,whenhereceivesthe

F(0,TSuchaninvestmenthasaguaranteedcashflow,andsoitsreturnmustbeexactlythesameasthereturnonariskasset,rThereturnontheinvestmentisequaltoSincethecashflowsarecertain,thisreturnmustbeequaltotheriskrateinordertoavoidarbitrageopportunities,(F(0,T)S0)/

Theforwardpriceisthereforegiven0F(0,T)S(1r)T0Asthematuritydateapproaches,theforwardpriceconvergestotheunderlyingprice潜伏价格Theforward Forexample,consideracontractforforwarddeliveryofonetonneofcocoaon31April20x8.Todayis1November20x7andthecurrentspotpriceis$955.00pertonne.Therisk rateofinterestis5.35%perannum.Supposethatyouboughtonetonneofcocoafor$955.00,andsimultaneouslyenteredintoashortforwardcontracttodeliveronetonneofcocoainsixmonths’timeattheforwardpriceofF(0,0.5)Thereturnonthisinvestmentisequalto(F(0,0.5)Sincethisisarisk return,itshouldbeequaltotherisk overthesameperiod(F(0,0.5)–$955.00)/$955.00=(1+5.35%)0.5–AndsotheforwardpriceisequalF(0, ==Futurescontracts合Forwardcontractshavetheadvantageofbeingtailor-tosuitindividualHowever,theyhaveanumberofdisadvantages:(1)theycannotbecancelledwithouttheagreementofbothcounterparties中的反方(2)theforwardcontractcannotbetransferredtoathirdparty,(3)thereisalwaysthepossibilitythatoneofthecounterpartieswillFuturescontractsoffermanyoftheadvantagesofforwardcontracts,butwithoutthedisadvantagesdescribedaboveAfuturescontractisacontractmadeattime0,tobuyorsellanassetorgoodatsometimeinthefutureT,ontermsagreedattimeT.Likeaforwardcontract,afuturescontractisthereforeacontractforforwarddeliveryratherthanspotdeliveryUnlikeaforwardcontract,however,thetermsofthefuturescontractarestandardisedFuturescontractsaretradedonexchangesthatareregulated,andofferprotectionagainstdefaultApositioninafuturescontractcanbeterminatedeitherbyholdingituntildeliveryorbytakinganequalandoppositepositioninthefuturesmarket(whichisknownasareversingtrade倒转)ThemarginaccountToeliminate清除thecosttotheexchangearisingfromdefaulted违约contracts,thecounterparties反方toafuturescontracteachopensamarginaccountwiththeirbroker人,inwhichtheyceadeposit,orinitialmargin原始押金,thatisequaltothe dailylossthatacontractislikelytooccurAttheendofeachday’strading,anylossaccruingtoacontractmustbepaidintothemarginaccount,andanyprofitcanbewithdrawn取出Theminimumallowablemarginisknownasthemaintenancemarginlevel保证金比率,andpaymentsintothemarginaccountareknownasvariationmargin盈亏保证金,ormaintenanceThemargin Thisisknownasmarking-to-Ifacounterpartyfailstomark-to-marketthenthecontractisclosed;thatday’slosseswillbecoveredbythebalanceofthemarginaccount保证金账户;sincefuturescontractsaremarked-to-market,thelargestlossthatcanoccurthroughdefaultisthechangeinthefuturespriceinasingledaytoensurethatthisiscoveredbythesurplusinthemarginaccount,futuresexchangesusuallyoperateasystemofpricelimitsThemarginisknownastheperformancebondinsomeForwardpricesandfutures Sincefuturescontractsaremarked-to-market,theirvalueonanyparticulardayisequaltozeroThedeliverypriceofafuturescontractandthespotpricewillgenerallydiffer,buttheyareobviouslyrelatedSimilartoaforwardcontract,asthedeliverydateapproaches,thespotandfuturespriceswillconvergeItisreasonabletoassumethatsinceforwardsandfuturesarebothcontractsforfuturedelivery,theirpriceswillbesimilarForwardpricesandfutures However,forwardandfuturescontractsarefundamentallydifferentsincetheformerinvolvesasinglecashflowatthedeliverydate,whilethelatterinvolvesdailycashflowsintheformofinitialandvariationNevertheless,ifinterestratesareconstant,futuresandforwardpricesmustbeidenticalinordertoprecludearbitrageopportunities.Swapsarecontractualagreementsbetweenindividualsorcompaniestoexchangecashflows,e.g.InterestrateswapsCurrencyswapsCreditdefaultswapConsiderinterestrateswapsfortwocompanies,andtwosourcesoffinance,namelyfixedandfloatingrateloans.Thefixedrateloanisavailableataknownrateofinterestthatisfixedforthematurityoftheloan.Thefloatingrateloanisavailableatvariablerate,usuallyquotedasLIBORplusafixedSupposethatforsomereason,oneofthecompanieshasaadvantageinthefixedratemarket,whiletheotherhasacomparativeadvantageinthefloatingratemarketIfthecompaniesenterintoainterestrateswapcontractthentheyagreetoeachtakeoutaloaninthemarketinwhichtheyhaveacomparativeadvantage,butthentoexchangeallthecashflowsassociatedwiththeloanOften,thecompaniesinvolveddonotactuallytakeouttheloans.Theymayjustwishtoexchangecashflows.Inordertoachievethis,thecompanieswillsetanotionalprincipal权益转易.ThisisusedsolelytodeterminethepatternofinterestpaymentsthatfollowCurrencyswapsareagreementstoexchangecashflowsdenominatedinonecurrencywithcashflowsdenominatedinAcreditdefaultswap(CDS)isaswapagreementthattheselleroftheCDSwillcompensatethebuyerintheeventofaloandefault.ThebuyeroftheCDSmakesaseriesofpaymentstothesellerand,inexchange,receivesapayoffiftheloandefaults.Swapsareusuallyarrangedthroughanintermediarybankwhowillearnafixedpercentagecommission.Supposethaton15December,GeneralElectric(GEC)通用borrows$25mforoneyearatLIBOR+0.25%.However,GECwouldactuallypreferafixedrateloanandapproachesJPMorgan(JPM)toarrangeaswap.GEC’sbestfixedrateis6.4%Simultaneously,Coca-Cola(KO)borrows$25mforoneyearatfixed.However,KOwouldactuallypreferafloatingrateloan,andalsoapproachesJPMtoarrangeaswap.KO’sbestfloatingrateisJPMoffersGECafixedrateof6.2%,andoffersKOafloatingrateloanatLIBOR+0.3% GEpaysLIBOR+0.25%(toitsbank)plus6.2%(toJPM),butreceivesLIBOR+0.15%(fromJPM).Intotal,itthereforepays(LIBOR+0.25%)+6.2%–(LIBOR+0.15%)=6.3%,whichisbetterthanitsbestfixedrate,whichisKOpays6.1%(toitsbank)plusLIBOR+0.3%(toJPM),butreceives6.0%(fromJPM).Intotal,itthereforepays6.1%+(LIBOR+0.3%)–6.0%=LIBOR+0.4%,whichisbetterthanitsbestfloatingratewhichisLIBOR+0.5%JPMreceives6.2%(fromGE)plusLIBOR+0.3%(fromKO)butpaysLIBOR伦敦银行间拆放款利率+0.15%(toGE)and6.0%(toKO).Intotal,itmakes6.2%LIBOR+0.3%)(LIBOR+0.156.0%=0.35%,whichisbetterthanInpractice,onlythenettedamountswouldbepaid,whichreducesthecreditriskforallpartiesAlso,JPMmayonlyenterintoaswapcontractwithoneofthefirms,buthedgetheresultinginterestrateriskthatitwouldfacebybuyingorsellinginterestratefuturesWeknowafinancialsecurityisassociatedwithastreamoffuturecashflows.Astructurednoteisadebtobligationthatisderivedfrom来someotherdebtExamplesofstructurednotesincludecolla lizedmortgageobligations房屋抵押(bondswhosecashflowsareguaranteed担保bypoolsofmortgages抵押thatarec

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论