2021-2022学年广东省汕尾市普通高校对口单招高等数学一自考模拟考试(含答案)_第1页
2021-2022学年广东省汕尾市普通高校对口单招高等数学一自考模拟考试(含答案)_第2页
2021-2022学年广东省汕尾市普通高校对口单招高等数学一自考模拟考试(含答案)_第3页
2021-2022学年广东省汕尾市普通高校对口单招高等数学一自考模拟考试(含答案)_第4页
2021-2022学年广东省汕尾市普通高校对口单招高等数学一自考模拟考试(含答案)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年广东省汕尾市普通高校对口单招高等数学一自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.设函数z=sin(xy2),则等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

2.设y1,y2为二阶线性常系数微分方程y"+p1y'+p2y=0的两个特解,则C1y1+C2y2().A.A.为所给方程的解,但不是通解B.为所给方程的解,但不一定是通解C.为所给方程的通解D.不为所给方程的解

3.

4.

5.

6.

7.

设f(x)=1+x,则f(x)等于()。A.1

B.

C.

D.

8.

9.曲线y=x+(1/x)的凹区间是

A.(-∞,-1)B.(-1,+∞)C.(-∞,0)D.(0,+∞)

10.设y=x+sinx,则y=()A.A.sinx

B.x

C.x+cosx

D.1+cosx

11.在空间中,方程y=x2表示()A.xOy平面的曲线B.母线平行于Oy轴的抛物柱面C.母线平行于Oz轴的抛物柱面D.抛物面

12.A.0B.1C.2D.不存在

13.

14.

A.-1/2

B.0

C.1/2

D.1

15.曲线y=x2+5x+4在点(-1,0)处切线的斜率为

A.2B.-2C.3D.-3

16.曲线y=1nx在点(e,1)处切线的斜率为().A.A.e2

B.eC.1D.1/e

17.已知斜齿轮上A点受到另一齿轮对它作用的捏合力Fn,Fn沿齿廓在接触处的公法线方向,且垂直于过A点的齿面的切面,如图所示,α为压力角,β为斜齿轮的螺旋角。下列关于一些力的计算有误的是()。

A.圆周力FT=Fncosαcosβ

B.径向力Fa=Fncosαcosβ

C.轴向力Fr=Fncosα

D.轴向力Fr=Fnsinα

18.设等于()A.A.-1B.1C.-cos1D.1-cos1

19.

20.

二、填空题(20题)21.

22.设区域D由y轴,y=x,y=1所围成,则.

23.

24.

25.

26.

27.曲线f(x)=x/x+2的铅直渐近线方程为__________。

28.

29.

30.设y=f(x)在点x=0处可导,且x=0为f(x)的极值点,则f'(0)=______.

31.

32.

33.

34.

35.

36.

37.

38.设.y=e-3x,则y'________。

39.

40.

三、计算题(20题)41.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.

42.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.

43.将f(x)=e-2X展开为x的幂级数.

44.

45.求函数f(x)=x3-3x+1的单调区间和极值.

46.证明:

47.当x一0时f(x)与sin2x是等价无穷小量,则

48.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.

49.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为

S(x).

(1)写出S(x)的表达式;

(2)求S(x)的最大值.

50.求曲线在点(1,3)处的切线方程.

51.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求该薄板的质量m.

52.

53.

54.求微分方程的通解.

55.

56.

57.

58.

59.求微分方程y"-4y'+4y=e-2x的通解.

60.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?

四、解答题(10题)61.

62.

63.

64.

65.

66.设

67.

68.

69.求微分方程的通解.

70.

五、高等数学(0题)71.设函数

=___________。

六、解答题(0题)72.设区域D由x2+y2≤1,x≥0,y≥0所围成.求

参考答案

1.D本题考查的知识点为偏导数的运算。由z=sin(xy2),知可知应选D。

2.B本题考查的知识点为线性常系数微分方程解的结构.

已知y1,y2为二阶线性常系数齐次微分方程y"+p1y'+p2y=0的两个解,由解的结构定理可知C1y1+C2y2为所给方程的解,因此应排除D.又由解的结构定理可知,当y1,y2线性无关时,C1y1+C2y2为y"+p1y'+p2y=0的通解,因此应该选B.

本题中常见的错误是选C.这是由于忽略了线性常系数微分方程解的结构定理中的条件所导致的错误.解的结构定理中指出:“若y1,y2为二阶线性常系数微分方程y"+p1y'+p2y=0的两个线性无关的特解,则C1y1+C2y2为所给微分方程的通解,其中C1,C2为任意常数.”由于所给命题中没有指出)y1,y2为线性无关的特解,可知C1y1+C2y2不一定为方程的通解.但是由解的结构定理知C1y1+C2y2为方程的解,因此应选B.

3.D

4.C解析:

5.C

6.C

7.C本题考查的知识点为不定积分的性质。可知应选C。

8.C

9.D解析:

10.D

11.C方程F(x,y)=0表示母线平行于Oz轴的柱面,称之为柱面方程,故选C。

12.D本题考查的知识点为极限与左极限、右极限的关系.

由于f(x)为分段函数,点x=1为f(x)的分段点,且在x=1的两侧,f(x)的表达式不相同,因此应考虑左极限与右极限.

13.D

14.B

15.C解析:

16.D本题考查的知识点为导数的几何意义.

由导数的几何意义可知,若y=f(x)在点x0处可导,则曲线),y=f(x)在点(x0,f(x0))处必定存在切线,且切线的斜率为f(x0).

由于y=lnx,可知可知应选D.

17.C

18.B本题考查的知识点为可变上限的积分.

由于,从而知

可知应选B.

19.D

20.A解析:

21.

22.1/2本题考查的知识点为计算二重积分.其积分区域如图1-2阴影区域所示.

可利用二重积分的几何意义或将二重积分化为二次积分解之.

解法1由二重积分的几何意义可知表示积分区域D的面积,而区域D为等腰直角三角形,面积为1/2,因此.

解法2化为先对y积分,后对x积分的二次积分.

作平行于y轴的直线与区域D相交,沿y轴正向看,入口曲线为y=x,作为积分下限;出口曲线为y=1,作为积分上限,因此

x≤y≤1.

区域D在x轴上的投影最小值为x=0,最大值为x=1,因此

0≤x≤1.

可得知

解法3化为先对x积分,后对Y积分的二次积分.

作平行于x轴的直线与区域D相交,沿x轴正向看,入口曲线为x=0,作为积分下限;出口曲线为x=y,作为积分上限,因此

0≤x≤y.

区域D在y轴上投影的最小值为y=0,最大值为y=1,因此

0≤y≤1.

可得知

23.

本题考查的知识点为二重积分的计算.

24.2/3

25.2xsinx2;本题考查的知识点为可变上限积分的求导.

26.

27.x=-2

28.(-∞2)(-∞,2)解析:

29.

解析:

30.0本题考查的知识点为极值的必要条件.

由于y=f(x)在点x=0可导,且x=0为f(x)的极值点,由极值的必要条件可知有f'(0)=0.

31.

32.2

33.

34.ex2

35.-ln(3-x)+C-ln(3-x)+C解析:

36.2本题考查了定积分的知识点。

37.ln2

38.-3e-3x

39.

40.(-22)(-2,2)解析:

41.

列表:

说明

42.

43.

44.由一阶线性微分方程通解公式有

45.函数的定义域为

注意

46.

47.由等价无穷小量的定义可知

48.

49.

50.曲线方程为,点(1,3)在曲线上.

因此所求曲线方程为或写为2x+y-5=0.

如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点

(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为

51.由二重积分物理意义知

52.

53.

54.

55.

56.

57.

58.

59.解:原方程对应的齐次方程为y"-4y'+4y=0,

60.需求规律为Q=100ep-2.25p

∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,

∴当P=10时,价格上涨1%需求量减少2.5%

61.

62.

63.

64.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论