版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y22.计算-5+1的结果为()A.-6 B.-4 C.4 D.63.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28B.26,26C.31,30D.26,224.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a75.﹣的绝对值是()A.﹣ B. C.﹣2 D.26.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25° B.50° C.60° D.30°7.按一定规律排列的一列数依次为:﹣,1,﹣,、﹣、…,按此规律,这列数中的第100个数是()A.﹣ B. C. D.8.|﹣3|的值是()A.3 B. C.﹣3 D.﹣9.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.米2 B.米2 C.米2 D.米210.的相反数是()A. B.- C. D.-二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为_____cm1.(结果保留π)12.分解因式:___.13.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_____.14.写出一个经过点(1,2)的函数表达式_____.15.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.16.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_____.三、解答题(共8题,共72分)17.(8分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.18.(8分)先化简,再求值:(1﹣)÷,其中x=1.19.(8分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.求证:AB为⊙C的切线.求图中阴影部分的面积.20.(8分)如图所示,点P位于等边△ABC的内部,且∠ACP=∠CBP.(1)∠BPC的度数为________°;(2)延长BP至点D,使得PD=PC,连接AD,CD.①依题意,补全图形;②证明:AD+CD=BD;(3)在(2)的条件下,若BD的长为2,求四边形ABCD的面积.21.(8分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?22.(10分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,=;②当θ=180°时,=.(2)拓展探究试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE的最大值为;②当△ADE旋转至B、D、E三点共线时,线段CD的长为.23.(12分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?24.矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E。当点F运动到边BC的中点时,求点E的坐标;连接EF,求∠EFC的正切值;如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.【详解】∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,∴y1==6,y2==3,y3==-2,∵﹣2<3<6,∴y3<y2<y1,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.2、B【解析】
根据有理数的加法法则计算即可.【详解】解:-5+1=-(5-1)=-1.故选B.【点睛】本题考查了有理数的加法.3、B.【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B.考点:中位数;加权平均数.4、B【解析】
根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.【详解】A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.【点睛】此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.5、B【解析】
根据求绝对值的法则,直接计算即可解答.【详解】,故选:B.【点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.6、A【解析】如图,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故选A.7、C【解析】
根据按一定规律排列的一列数依次为:,1,,,,…,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、……,型;分子为型,可得第100个数为.【详解】按一定规律排列的一列数依次为:,1,,,,…,按此规律,奇数项为负,偶数项为正,分母为3、7、9、……,型;分子为型,可得第n个数为,∴当时,这个数为,故选:C.【点睛】本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.8、A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数,故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.9、C【解析】
连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故选C.10、B【解析】∵+(﹣)=0,∴的相反数是﹣.故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.试题解析:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=110°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC=.考点:正多边形和圆.12、【解析】
先提取公因式,再利用平方差公式分解因式即可.【详解】故答案为:.【点睛】本题考查了分解因式,熟练掌握因式法、公式法、十字相乘法、分组分解法的区别,根据题目选择合适的方法是解题的关键.13、4x=5(x-4)【解析】按照面积作为等量关系列方程有4x=5(x﹣4).14、y=x+1(答案不唯一)【解析】
本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式.答案不唯一.【详解】解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1,…答案不唯一.
故答案可以是:y=x+1(答案不唯一).【点睛】本题考查函数,解题的关键是清楚几种函数的一般式.15、1【解析】
根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得;即DC2=ED?FD,代入数据可得答案.【详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入数据可得DC2=31,DC=1,故答案为1.16、【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长则所得到的侧面展开图形面积.考点:勾股定理,圆锥的侧面积公式点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.三、解答题(共8题,共72分)17、(1)y=﹣x2+x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】
分析:(1)待定系数法求解可得;
(2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再证△MBQ∽△BPQ得,即,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),
将点C(0,2)代入,得:-4a=2,
解得:a=-,
则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2;
(2)由题意知点D坐标为(0,-2),
设直线BD解析式为y=kx+b,
将B(4,0)、D(0,-2)代入,得:,解得:,
∴直线BD解析式为y=x-2,
∵QM⊥x轴,P(m,0),
∴Q(m,-m2+m+2)、M(m,m-2),
则QM=-m2+m+2-(m-2)=-m2+m+4,
∵F(0,)、D(0,-2),
∴DF=,
∵QM∥DF,
∴当-m2+m+4=时,四边形DMQF是平行四边形,
解得:m=-1(舍)或m=3,
即m=3时,四边形DMQF是平行四边形;
(3)如图所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下两种情况:
①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,
则,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,即,
解得:m1=3、m2=4,
当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,
∴m=3,点Q的坐标为(3,2);
②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,
此时m=-1,点Q的坐标为(-1,0);
综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.【详解】请在此输入详解!18、.【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【详解】原式==当x=1时,原式=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.19、(1)证明见解析;(2)1-π.【解析】
(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.【详解】(1)过C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.∵CF⊥AB,∴AB为⊙C的切线;(2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.20、(1)120°;(2)①作图见解析;②证明见解析;(3)3.【解析】【分析】(1)根据等边三角形的性质,可知∠ACB=60°,在△BCP中,利用三角形内角和定理即可得;(2)①根据题意补全图形即可;②证明△ACD≌△BCP,根据全等三角形的对应边相等可得AD(3)如图2,作BM⊥AD于点M,BN⊥DC延长线于点N,根据已知可推导得出BM=【详解】(1)∵三角形ABC是等边三角形,∴∠ACB=60°,即∠ACP+∠BCP=60°,∵∠BCP+∠CBP+∠BPC=180°,∠ACP=∠CBP,∴∠BPC=120°,故答案为120;(2)①∵如图1所示.②在等边△ABC中,∠ACB∴∠ACP+∵∠ACP=∴∠CBP+∴∠BPC=180°-∴∠CPD=180°-∵PD=∴△CDP∵∠ACD+∴∠ACD在△ACD和△AC=BC ∴△ACD∴AD=∴AD+(3)如图2,作BM⊥AD于点M,BN⊥∵∠ADB=∴∠ADB=∴∠ADB=∴BM=又由(2)得,AD+∴S四边形ABCD==32×2【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质等,熟练掌握相关性质定理、正确添加辅助线是解题的关键.21、(1)A、B两种品牌得化妆品每套进价分别为100元,75元;(2)A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解析】
(1)求A、B两种品牌的化妆品每套进价分别为多少元,可设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m的范围,再用代数式表示出利润,即可得出答案.【详解】(1)设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.得解得:,答:A、B两种品牌得化妆品每套进价分别为100元,75元.(2)设A种品牌得化妆品购进m套,则B种品牌得化妆品购进(50﹣m)套.根据题意得:100m+75(50﹣m)≤4000,且50﹣m≥0,解得,5≤m≤10,利润是30m+20(50﹣m)=1000+10m,当m取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.22、(1)①;(2)无变化,证明见解析;(3)①2+2+1或﹣1.【解析】
(1)①先判断出DE∥CB,进而得出比例式,代值即可得出结论;②先得出DE∥BC,即可得出,,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE,进而判断出△ADC∽△AEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD.【详解】解:(1)①当θ=0°时,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案为,②当θ=180°时,如图1,∵DE∥BC,∴,∴,即:,∴,故答案为;(2)当0°≤θ<360°时,的大小没有变化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴;(3)①当点E在BA的延长线时,BE最大,在Rt△ADE中,AE=AD=2,∴BE最大=AB+AE=2+2;②如图2,当点E在BD上时,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根据勾股定理得,BD==,∴BE=BD+DE=+,由(2)知,,∴CD=+1,如图3,当点D在BE的延长线上时,在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD=﹣1.故答案为+1或﹣1.【点睛】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.23、(1)y=x1.z=﹣x+30(0≤x≤100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元【解析】
(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(1)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax1(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=,故y与x之间的关系式为y=x1.图②可得:函数经过点(0,30)、(100,10),设z=kx+b,则,解得:,故z与x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 饮食店面租赁合同范本
- 签合同打工抵债写协议
- 签订地区代理合同范本
- 粮油蔬菜供货合同范本
- 终止劳务分包合同协议
- 老房翻新建房合同范本
- 聘用协议能签几年合同
- 肖像服装采购合同范本
- 肥料订合同协议书范本
- 英语课程合同服务协议
- 电网工程设备材料信息参考价(2024年第四季度)
- 数据中心运维服务投标方案(技术标)
- 2025年中核环保有限公司招聘笔试参考题库含答案解析
- 人工智能在智能交通系统中的应用
- 放射治疗历史
- 五年级语文上册 古诗专项(部编版)
- 2024-2025学年江苏省南京市江宁区四年级(上)期中语文试卷
- 5-管理学-决策的实施与调整(马工)
- GB/T 24632.2-2024产品几何技术规范(GPS)圆度第2部分:规范操作集
- 临床药师进修汇报课件
- 国家病案质控死亡病例自查表
评论
0/150
提交评论