版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
a2a2开学试卷题号
一
二
三
四
总分得分一、选择题(本大题共小,共分)
在-、、64、
、、、-0.1616616661(它们的位数是无限的,相邻两个之间个数依次增加)这些数中,无理数的个数是()
B.
C.
D.
下列说法中正确的是()
无限不循环小数是无理数一个无理数的平方一定是有理数无理数包括正无理数、负无理数和零两个无理数的和、差、积、商仍是无理数
的平方根是()
±
B.
C.
3
D.
已知=1.732,下列式正确的是()B.=17.32C.D.下列结论正确的是()B.-a没平方根C.的平方根是D.平方是
二、填空题(本大题共题,共分)如果=4,么.在数轴上,如果点、点B所对应的数分别是-2,那么B两的距离.在两个连续的整数和间<b,那么(+)=______若
的平方根是______,则x+5的方根是_.建平香梅学生一年做的作业约为万,其中万有个效数字,精确_位.使是整数的最小正整数=______.比大小______
.如
,那么取值范围.
若x=2,则x=.立方根与平方根相等的数.用四舍五入法对取似值,保留有效数字的结果是.的对值是______使得有义的的取值范围是_____.已知有理数a,在轴上的位置如图所示,化-b|-|c第1页,共页2201820190-12201820190-1把
化成幂的形式是_.化:
.-2的数部分是,算a=______.大小的无理数有______.计:=______.已
=9
,则x.三、计算题(本大题共小,共分)利分数指数幂计算:÷.计:(
+2)(
-2)+3×9.计:
+(
)().已x+y的负的平方根是-,x-y立方根是3求x-5的四次方根.第2页,共页222222已实数x、满
+|xy,求代数式2-的.四、解答题(本大题共小,共分)计:(+-3)(-+3-().求的:(x).a、三数在数轴上的点如图所示,ac|-|c+|-
的值.解等式x>(1-
),它解集在数轴上表示出来,并求出它的正整数解.第3页,共页1.【答案】【解析】解:在-1、、64
答案和解析、、、、…它们的位数无限的,相邻两个1之间个数依次增加)这些数中,无理数是:、、、…它们的位数是无限的,相邻两个之6的个数依次增加1个),故选:B.根据题目中的数据,可以得到哪些数是无理数,本题得以解决.本题考查算术平方根、立方根、无理数,解答本题的关键是明确题意,找出题目中的无理数.2.【答案】【解析】解:、确,故选项正确;π是无理数,故选项错误;是无理数,是有理数,故选项错误;D、和
都是无理数,这两个数的和,积,商都是有理数,故选项错误.故选:A.根据无理数的定义:无理数是无限不循环小数,即可判断.本题主要考查了无理数的定义理数就是无限不循环小数意个无理数的和,积,商不一定还是无理数.3.【答案】【解析】解:
=3平方根为故选A.
.首先根据算术平方根的定义求出
的值,再根据平方根的定义求它的平方根即可.此题主要考查了算术平方根根的定义遇到求一个比较复杂的数的平方根时,应先把该式进行化简.4.【答案】C【解析】解:,
=.故选:.直接利用已知结合二次根式的性质得出答案.此题主要考查了算术平方根,正确运用二次根式的性质是解题关键.5.【答案】D【解析】解:、=±3,故本选项错误;≤0时≥0,平根,故本选项错误;,的方根是=±,故本选项错误;D、平方是正,故本选项正确.第4页,共页2aa2aa故选:D根据平方根术平方根的定义以及有理数的乘方的定义对各选项分析判断后利用排除法求解.本题考查了算术平方根的定义,平方根的定义,有理数的乘方,是基础题,熟记概念是解题的关键.6.【答案】16【解析】解:
=4x=16,故答案为:.根据算术平方根的定义得出,一个正数的方等于,=,么这个正数叫做算术平方根,记为,即可得出是的术平方根,求出即可.此题主要考查了算术平方根的定义,根据定义直接得出答案是解决问题的关键.7.【答案】3-5【解析】解:=|(3-
)(2-2)+2|=|5-3|=3故答案为.根据数轴上两点之间的距离计算方法,求两个点对应的数字的差的绝对值即可.本题考查的是数轴上两点间的距离,把握两点间距离的求法是解决本题的关键.8.【答案】11+6【解析】解:<5<9,<<,,b=3,(+)=3+)=9+6.故答案为:11+6.由于<5,那么2<<3,从而易求,b=3,进而可求(b).本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.9.【答案】【解析】解:,的平方根是;故答案为:.先求出的,再根据平方根的定义求解即可.此题主要考查了平方根的定义,解题的关键是求出即可求出答案.【案】3【解析】【分析】
的值,然后根据平方根的定义由
,利用算术平方根的定义可以,得x=2再代入求x+5的,从而求其平方根.此题主要考查了平方根、算术平方根的定义,求一个数的平方根,应先找出所要求的这个数是哪一个数的平方平和平方是互逆运算方方法求这个数的平方根.【解答】解:=2第5页,共页2222x+2=4解得x=2x,平方根3,即2+5平方根.故答案为:.【案】百【解析】解:0.906050万个效数字,精确到百分位,故答案为:6,百分位.根据题目中的数据可以解答本题.本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的含义.【案】【解析】解:是整数,且,n完全平方数,满条件的最小整数n为.故答案是:2.因为是数,且,n完全平方数,满足条件的最小正整数n为2主要考查了乘除法法则和二次根式有意义的条件根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则
=
.除法法则=.题关键是分解成一个完全平方数和一个代数式的积的形式.【案】<【解析】解:()<10
,(
)=10,<.故答案为:<.将两个数平方后比较大小即可求解.考查了实数大小比较,任意两个实数都可以比较大小.正实数都大于,负实数都小于0正实数大于一切负实数,两个负实数绝对值大的反而小.本题采用了平方法,【案】≤0【解析】解:而,a|=-a≤0.故答案为≤0.
a,根据二次根式的性质得到范围.
a,则a|=-,然后根据绝对值的意义即可得到a的值第6页,共页555555本题考查二次根式的性质与化简:
=|a.也考查了绝对值的意义.【案】【解析】解:直接开平方得:x=±.故答案为:.直接开平方即可求解.此题主要考查了解一元二次方直接开平方法解题的关键是符合直接开平方的形式.【案】【解析】解:立方根与平方根相的数为.根据平方根、立方根的定义即可求解.此题主要考查了平方根.立方根的定义,比较简单,只有足要求.【案】5.0×10【解析】解:496967.03≈5.0×10(保留2个效数字),故答案为:5.0×10.根据四舍五入法和有效数字的知识可以解答本题.本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的含义.【案】【解析】解:1-的绝对值是-1.故答案为:-1.根据绝对值的性质解答即可.本题考查了实数的性质,主要利用了绝对值的性质.【案】x【解析】解:
有意义,+2,解得:≤.故答案为:x.直接利用二次根式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.【案】b+a【解析】解:由图得,c<<<b,且c>b>a,a-|-|ca|=b+-a=+a故答案为b-2.根据数轴得出ab,c的小系,再根据绝对值进行求值即可.本题考查了整式的加减,掌握去括号与合并同类项是解题的关键.【案】第7页,共页22【解析】解:把
化成幂的形式是,故答案为:.根据分数指数幂的定义可以解答本题.本题考查分数指数幂,解答本题的关键是明确分数指数幂的定义.【案】【解析】解:故答案是:-3.
=
=π-3.二次根式的性质:
=a(),根据性质可以对上式化简.本题考查的是二次根式的性质和化简,根据二次根式的性质,对代数式进行化简.【案】【解析】解:<<,<<,-2的小数部分=,(-2)=7-4+4=11-4.故答案为:11-4.先估算出的范围,再求出-2范围,即可求出a再代入后根据完全平方公式即可得出答案.本题考查了估算无理数的大小,能估算出的范围是解此题的关键.【案】无数【解析】解:大于小的理数有无数个.故答案为:无数.根据实数大小比较,以及无理数的定义即可求解.考查了实数大小比较,无理数,是基础题型,比较简单.【案】-【解析】解:原式===-
,故答案为:根据完全平方公式以及二次根式的性质即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.【案】【解析】解:
=9,,
,第8页,共页220180220180解得,=,故答案为:.根据
=9,可以求得的.本题考查分数指数幂,解答本题的关键是明确分数指数幂的含义.【案】解:原=2×22=4.【解析】原式化简为分数指数幂计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.【案】解:原=[
())]
()+3×3-1.【解析】原式逆用积的乘方运算则计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.【案】解:
+(
-1)()
-1=-1=+=2【解析】根据实数的运算法则以二次根式的性质化简,即可得到计算结果.本题主要考查了二次根式的化简计算零指数幂以及负整数指数幂是解决问题的关键.【案】解:+y的的平方根是-,x的立方根是3,
,解得,,
==±3即2-5y的次方根是3【解析】根据x+的的平方根是3,-y的方根是3,可以求得x、y的,从而可以求得所求式子的四次方根.本题考查平方根、立方根,解答本题的关键是明确题意,求出、y的.【案】解:
+|x+2|=0解得:
,,则原式.【解析利非负数的性质列出方程组,求出方程组的解得到x与的,代入原式计算即可求出值.此题考查了解二元一次方程组非负数的性质掌握运算法则是解本题的关键.【案】解:(+-3)(-+3-
2第9页,共页22===3-11+6=-19.【解析】先利用平方差公式和完平方公式化简去括号,最后进行加减即可.本题考查了二次根式的混合运算,熟练运用平方差公式与完全平方公式是解题的关键.【案】解:()
2
=,x-3=±,x=或.【解析】用直接开方法解出的即可.本题考查了利用平方根的性质求的,注意一个数的方根有两个是解题的关键.【案】解:由数轴可知<c<<b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行智能运维与故障诊断
- 2025-2030家居建材市场覆盖范围广大行业龙头竞争态势分析报告
- 2025-2030家具生产制造行业供需分析品质提升投资机会风险分析报告
- 2025-2030宅配生鲜盒马模式市场占有率消费者行为新零售投入运营规划布局分析研究报告
- 2025-2030婴幼儿有机食品认证流程与市场推广报告
- 2025-2030女性用品市场消费行为分析及新兴品牌成长性评估报告
- 2025-2030外汇交易行业竞争格局及投资机会规划分析研究报告
- 2025-2030在华外资电子陶瓷刮削技术设备投资领域市场进入壁垒测度及战略布局手册
- 2025-2030土库曼斯坦天然气资源开发项目供需匹配及能源输出通道建设规划研究
- 2025-2030图形图像行业市场现状分析技术发展评估与行业投资规划研究
- 2025年母子公司间投资合同范本
- 医院安全生产下一步工作计划
- 实验室质控考核管理
- 2025青海省生态环保产业有限公司招聘11人笔试考试参考题库及答案解析
- 销毁物品协议书范本
- 2025高一英语上学期期末复习资料
- 办公室主任年度述职报告
- 妇产科产房培训大纲
- 建筑工地安全检查自评表模板
- 2025年新能源汽车车路协同通信在数字孪生中的应用报告
- 高层建筑脚手架安全使用规范对比
评论
0/150
提交评论