版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.z---.--总结资料成人教育毕业设计(论文)论文题目:110kV变电站无功综合控制110kV变电站无功综合控制摘要本文主要针对110kV变电站电压无功综合控制〔VQC〕的策略进展了比较、分析、思考和仿真。首先,本文介绍了无功补偿控制技术开展概况和各种传统策略的特点,然后阐述了变电站电压无功综合控制根本原理,依照电压无功综合控制的控制要求及模式,引出并分析了传统九区图控制策略的缺乏之处;基于此根底之上,提出了一种基于变量计算的VQC策略原理,并利用变电站实际数据对该种控制策略的控制效果进展模拟仿真,得出了该种控制策略的有效性和相对传统调控策略的优越性;最后给出了本文未来研究方向的一些建议。关键词:VQC;九区图;变量计算;电容器;变压器分接头-.z目录摘要……………Ⅰ1绪论…………………………11.1课题背景……………………11.2无功补偿控制技术开展概况………………1传统人工调节控制技术…………………1并联电容组自动投切控制技术…………1各种无功补偿控制技术比较……………21.3…………22变电站电压无功综合控制原理……………32.1变电站电压无功综合控制根本原理………32.2变电站电压无功综合控制的控制要求及模式……………52.2.1变电站电压无功综合控制的控制要求…………………变电站电压无功综合控制的控制模式…………………52.3九区图控制策略原理分析…………………62.3.1传统九区图的根本原理…………………2.3.2传统九区图的缺陷分析3应用实例……………………103.1变电站根本情况…………103.2计算补偿容量……………103.3补偿容量确实定…………124结论…………………………13参考文献………………………14致谢……………15-.z1绪论1.1课题背景在当今这个以电为主要能源的社会当中,人们对于电量的质量问题要求越来越高,而电压却是对电能质量影响最为突出的一个指标。电网的运行是否稳定、电力设备在运作的过程中能否平安,电压质量有着很大的影响。对于电压质量影响比较明显的内在因素是无功,对于各级变电站来说,对电压采用无功进展调节,就是它们最主要的任务之一。变电站的作用就是实现无功的就地平衡、减少无功在线路上面的流动、最大程度降低线网损害以及让全网能够实现优化运行。在110kV变电站当中,为了能够弥补电站系统还有用户本身无功缺乏的问题也为了确保变电站本身的电压质量能够到达合格的标准,一般的情况下都是使用投切电容器组来对无功进展补偿、主变压器里面的分接头进展变化这两种方法来做到。要改善电能的质量还有让劳动生产率进一步的提高,因此电压无功的自动控制已经是必然要使用到的一种手段。[1]无功补偿的主要作用就是提高功率因数以减少设备容量和功率损耗、稳定电压和提高供电质量,在长距离输电中提高输电稳定性和输电能力以及平衡三相负载的有功和无功功率。安装并联电容器进展无功补偿,可限制无功功率在电网中的传输,相应减少了线路的电压损耗,提高了配电网的电压质量。[2]1.2无功补偿控制技术开展概况1.2过去老式传统的常规变电站一直由值班电工根据供电系统调度下达的电压无功控制方案和实际运行情况,以人工手动调节的方式调节电压无功。这种方式一方面加重了工作人员的工作负担,另一方面由于采用双参调整,通过人为判断、操作,很难保证电压和无功运行于规定的*围内。1.2为减轻值班电工的工作强度,并联电容组自动投切控制方式应运而生。它主要有几种控制判据:1〕功率因数控制判据其原理是以功率因数作为控制信号来控制并联电容器的投切动作;由于这种控制策略不能具体的反映电网对无功的需求,存在电网对无功的过补和不能及时补偿的结果情况。2〕母线电压控制判据其原理是透过检测母线电压决定电容器的投切;这种控制策略比较简单,难以作到无功功率的就地平衡。3〕母线电压及其昼夜时间复合控制判据其原理是根据变电站的日负荷运行曲线,将日负荷划分为多个负荷时段,根据不同负荷时段对电压和无功的要求,编制适宜的运行程序,实现对变压器分接头的调节和对并联电容器投切控制。这种控制策略只适合于日负荷规律比较稳定的变电站,且必须随季节和负荷量的改变,对时段的母线电压和无功功率补偿值进展调整。当由于季节和天气因素造成负荷随机变换时,还可能出现控制不当,导致负面影响。4〕母线电压及其功率因素复合控制判据其原理是通过检测变压器一次侧功率因数和母线电压,综合分析判断后决定对变压器分接头和并联电容器的调节。此种控制策略有两种判别方式:一是以母线电压为主,功率因数为辅,即只要电压合格就不考虑功率因数,当母线电压不合格时,根据母线电压和功率因数的性质综合判断做出调节动作;另一种是母线电压和功率因数作为两个并行的判据,即使电压在合格*围之内,如果功率因数满足动作条件,也会向变压器分接头和并联电容器发出动作。第一种判据方法尽管考虑了无功补偿效果,但是在*些运行状态下,缺无功补不上去,超无功又切不下来,致使无功补偿效果不佳;第二种判据方法,功率因数并不能反映无功,甚至偶尔两个并行判据互相矛盾,造成装置频繁动作的现象。5〕母线电压及其无功功率复合控制判据其原理是根据母线电压和无功功率将运行情况分为九个区域,在不同的区域采用不同的控制对策,综合利用调节有载调压变压器分接头和并联电容器投切策略,将母线电压和无功功率控制在各自允许的*围之内。但是由于采用的是固定边界,无法反映补偿动作对电压的影响,在*些情况下存在动作频繁的问题。1.2由上节所述可知,各控制策略都存在各自的优点和缺点。相对而言,电压无功综合控制〔即以母线电压及其无功功率为复合控制判据的并联电容组自动投切控制技术〕能够保证电网运行在电压合格*围内,同时也保证了无功根本平稳。故此控制策略广泛的应用于当下无功补偿装置中,取得较好的补偿效果;但是此种控制策略在临界区域容易造成装置频繁动作,投切振荡的问题。1.3本文主要研究内容本文阐述了变电站电压无功综合控制根本原理,依照电压无功综合控制的控制要求及模式,引出并分析了传统九区图控制策略的缺乏之处;基于此根底之上,提出了一种基于变量计算的VQC策略原理,并利用变电站实际数据对该种控制策略的控制效果进展模拟仿真,得出了该种控制策略的有效性和相对传统调控策略的优越性。2变电站电压无功综合控制原理2.1变电站电压无功综合控制根本原理图2-1辐射型网络图2-1为110kV辐射型网络,其中US为系统电源电压,这里考虑它是稳定不变的,U1、U2分别为主变压器高、低压侧电压,变压器具有理想变比,ULD为负荷端电压,RST+j*ST为电源、线路与主变的总阻抗,RL+j*L为低压侧配电线路阻抗,QC为并联补偿电容组容量,PLD+jQLD为负荷,对地参数忽略不计。依图可得(2-1)(2-2)(2-3)(2-4)无功补偿调控的目标一是用户终端电压维持在额定电压的±5%以内,二是高压电网和主变压器的功耗最小。假设终端用电设备的自然功率因数角ψ在较小的*围内变化,则式(2-1)可变换为(2-5)式中,ULDN为终端用电设备额定电压。可见,要维持终端电压在允许的*围内,就要按照负荷视在功率对主变低压侧电压进展逆调压。110KV变电站往往具有多回出线,各回路负荷变化规律不一,所以这里按照变电站综合负荷变化情况进展逆调压。(2-6)(2-7)在多终端用户时,可按式(2-6)分别计算各用户对应的主变低压侧母线电压允许*围Ci,再取交集C,即为U2应处的区域,如式(2-7)所示。另外一方面,在满足低压母线电压U2要求的情况下,要使高压电网和主变压器的功耗ΔS最小,由式(2-2)、(2-4)可知,只要将变电站和系统交换的无功│QLD-QC│最小即可。要到达以上控制目标,变电站有两个具体的调节手段:一是通过调节变压器分接开关来改变变压器的变比k,二是通过投切并联电容器组改变QC。通常的做法是采用一定的策略单独或者组合使用上面两个调节手段,使得主变低压侧母线电压和高压侧无功功率〔或功率因数〕在规定的*围内,亦即章节1.2.2由于终端负荷中异步电机所占份额过半,所以综合无功负荷的电压静态特性曲线主要取决于异步电动机的无功功率-电压静态特性曲线,如图2-2(a)所示。而改变变压器变比的调压手段本身不会产生无功功率,因此当无功严重缺乏时调节分接开关,会使得上级系统的无功强行注入;系统无功过剩时调节分接开关,会使得过剩无功反响回上级系统。这样无功功率在电网上流动会导致网损增加。如果系统无功供给缺乏,导致电压下降,单靠改变变压器变比使得局部电压得到改善,而其他局部电压会更低;此时,需要新增无功电源并联补偿,改变无功分布不均以到达调压的目的。如图2-2(b)所示,曲线1、2的交点a为额定电压下的无功平衡点,当负荷增加变为曲线4时,如果不增加无功电源,则曲线1和4的交点b为新的无功平衡点。由于无功电源供给缺乏,该点电压明显低于额定电压。而此时投入电容,使得无功电源电压特性曲线上移至曲线3,则曲线3、4的交点c所确定的电压接近额定电压。(a)综合有功-无功负荷电压静态特性曲线(b)无功电源补偿示意图图2-2综合负荷的电压静态特性曲线通常来讲,当系统无功供给缺乏或过剩时,应该投切电容组来改变无功分布,使无功到达平衡、功率因数接近1,减小网损和电压损耗。当系统无功供给充足时,可以改变变压器的变比来调压。而更多时候,将两种手段综合运用,即实现电压无功综合控制〔VQC〕方式,才能获得较为满意的控制效果。2.2变电站电压无功综合控制的控制要求及模式变电站电压无功综合控制系统通常选取主变压器抵押母线电压U2和主变压器高压侧注入无功功率Q1〔或主变高压侧功率因数cosφ1〕作为调控考核对象。具体的控制要求为:“保证电压合格,在无功根本平衡的前提下,尽量减少有载调压变压器分接开关的调节次数和并联电容组的投切次数〞[3]。由于变压器的分接头是分档调节的,并联电容分组投切的因此只能使电压U2在一定*围内接近额定值,无功Q1在一定*围内接近0,功率因数cosφ1在一定*围内接近1。2.1〕保证电压合格主变压器低压母线电压U2必须满足:UL≤U2≤UH〔UH、UL是规定的母线电压上下限〕,并尽量使负荷电压偏差│ULD-ULDN│最小。由于负荷是随机变化的,母线上电压也是不定的,因此允许各电压中枢点的电压在一定*围内。2〕维持无功根本平衡,使系统的功耗尽量减小为了保证电压合格,就必须保证系统的无功分布平衡,使通过变压器的无功尽量少,这是前提条件。从变电站电压无功综合控制的角度,通常要求主变压器高压侧注入无功功率Q1必须满足QL≤Q1≤UH〔QH、QL是规定的无功上下限〕,Q1越接近0越好,一般情况下应使流入变电站的无功大于0,即无功不反响;或主变压器高压侧功率因数cosφ1必须满足cosφL≤cosφ1≤cosφH〔cosφH、cosφL是规定的功率因数上下限〕,cosφ1越接近1越好。保持无功平衡对保持电网稳定性、减少网损十分有益。在保证电压合格的前提下,使网损尽量小也应作为一条控制要求。有时候为保证电压合格,常采用强行调节的措施,如当分接开关调剂次数达限或闭锁时,常采用强投强切电容器组的方法来保证电压质量,以牺牲无功和网损合格率为代价。3〕尽量减少控制设备的动作次数由于变压器在电网中的重要地位,应对其加以保护。在有载调节分接开关时,由于会出现短时的短路而产生电弧,会对分接开关的机械和电气性能产生影响。有资料显示,有载调节变压器80%的故障是由于分接开关引起的[3],因此变电站要严格限制分接头的单位时间内的动作次数,同时也对电容器组的单位时间内的投切次数做出限制。因此在控制策略上应尽量使日动作次数越少越好。2.变电站电压无功综合控制系统的调控考核对象之一是无功指标,即可以取主变高压侧〔或低压侧〕无功功率,也可以取主变高压侧〔或低压侧〕功率因数,分别可以称为“电压无功功率控制〞模式和“电压-功率因数控制〞模式。对于这两种控制模式的特点分析、比照,详见章节1.2.22.3九区图控制策略原理分析控制策略师变电站VQC调节的根本准则。由于变电站电压无功综合控制是一个复杂的双参数调节系统,因此合理的控制策略是VQC实际投用的根本要求之一。可以将变电站看作是电力系统的一个元件,其电压和无功流动与系统是相互影响的,因此在控制策略上VQC必须满足变电站调节电压和平衡无功的要求,同时还要尽量减少有载调压变压器分接开关和电容器组的动作次数,另外还要服从系统运行的需要。传统的VQC控制系统都是基于传统九区图的控制策略,控制装置根据电压、无功、时间、负荷率、开关信息、有载变压器分接开关档位和电容器组投切开关状态等多因素进展综合判断,根据实时数据判断当前的运行区域,再按照一定的给定规则,闭环的控制站内并联电容器组的投切和变压器分接开关的调节,以最优的控制顺序和最少的动作次数使运行点进入正常工作区域。图2-3所示是传统九区图示意。其中UH、UL是规定的母线电压上下限,QH、QL是规定的无功上下限,cosφH、cosφL是规定的功率因数上下限。图2-3九区图示意图2.传统的九区图控制策略是按照固定的电压和无功〔功率因数〕上下限将电压-无功平面划分为9个区域,如图2-3所示。根据VQC的调控要求,应将受控母线电压控制在规定的电压上下限之间,确保电压合格,同时尽量使无功控制在规定的无功上下限之间,如果电压、无功不能同时到达要求,则优先确保电压合格。九区图各区域具体的综合控制策略如表2-1所示[4][5]:表2-1九区图综合控制策略示意表无功功率下限无功功率上限8区
切电容
无电容可切,升档降压1区
升档降压
在最高档,强切电容2区
升档降压
在最高档,强切电容7区
切电容
无电容可切,维持9区
不动作
逆调压原则调整电压下限3区
投电容
无电容可投,维持6区
降档降压
在最低档,强投电容5区
降档降压
在最低档,强投电容4区
投电容
无电容可投,降档升压功率因数上限功率因数下限九区图的电压、无功上下限一般在*个负荷时段取固定值,并按逆调压原则自动调整电压下限值。变电站如何越大、电压下限值越高,即在顶峰负荷时适当提高运行电压,将电压下限值提高;同理,在低谷负荷时候适当降低运行电压,将电压下限值降低。基于九区图策略的VQC在一定程度上提高了主变低压侧母线电压的合格率,实现了无功就地平衡,改善了变电站的功率因数和减少了电网的功率损耗,在一定程度上能够满足变电站的运行要求。2.由于电压、无功上下限都是固定值,未充分考虑电压、无功的相互协调关系,*些区域的控制策略不能使电压、无功同时满足要求,只能使运行点进入相邻区域,而不能够直接进入9区,从而增加了受控设备的动作次数。(a)恒定阻抗负荷模型(b)恒定功率负荷模型(c)振荡动作示意图2-4九区图不合理动作示意如图2-4(a)所示,QL≤0,变电站负荷取恒定阻抗模型。6区采用的降档升压策略,在提高电压的同时却使无功功率在一定程度上受到恶化,因此运行点进去7区而不可能直接进入9区。当运行点位于5区中无功功率为负值的S区时,降档可能会使无功功率越下限,运行点进入7区或6区。又如4区采用的辅助策略降档升压,在提高电压的同时会使感性无功功率数值增大,因此运行点将进入3区。如图2-4(b)所示,QL≤0,ΔUumin为调节1档分接头所引起的无功功率最小变化量,变电站负荷取恒定功率模型。2区和6区采用的调档策略在改善电压的同时均会使无功功率在一定程度上恶化,运行点只能进入3区和7区。又如当运行点位于1区中的S1小区时,升档降压会使无功功率越上限,运行点进如3区或2区;当运行点位于5区中的S2小区时,降档升压会使无功功率越下限,运行点进入7区或6区。比较图2-4(a)、(b),可知对于ZIP负荷模型,6区采用的降档升压策略总会使运行点进入7区。由于调档对无功功率的影响极小,这些区域的调档策略根本符合VQC的控制目标,但增加了分接头和电容器组的动作次数。在没有其他更为适宜的策略的情况下,这些区域只能采用调档措施。九区图的*些区域对于控制的结果还可能会产生振荡动作的现象。所谓“振荡动作〞是指在调档和投切电容时,不能使运行点直接进入目标区域而是进入控制前所在区域的邻近区域,在邻近区域控制策略的作用下,又使运行点回到控制前区域的现象。振荡动作现象会增加分接头和电容器组的动作次数,对设备的使用寿命产生不利的影响,并使系统所受冲击次数增多,因此在控制策略上应加以防止。如图2-4(c)所示,QL≤0,ΔUqmin为投切1组电容器所引起的电压最小变化量,变电站负荷取恒定阻抗模型。图中,当系统运行于3区中ΔUq区中的任意一a点时,根据3区的VQC策略,将投入1组电容器进展无功补偿,引起电压升高,无功功率减小,功率因数增大,则投电容后运行点将可能进入1区或2区而非9区;此后VQC应该按1区或2区的策略动作,分以下两种情况。1〕投电容后运行点进入1区假设分接头有足够的档位可上调,则VQC执行升档动作,电压降低,功率因数不变,无功功率数值减小且性质不变,无功功率不会越下限,不管是何种控制模式,运行点都可以进去9区。假设分接头已调至最高档或分接头达日最大调节次数而闭锁,则VQC执行强切电容动作,使运行点又回到原先的a点;VQC再按3区的策略投电容,如此就产生电容投切振荡现象。2〕投电容后运行点进入2区假设分接头有足够的档位可上调,则VQC执行升档动作,电压降低,功率因数不变,无功功率数值减小且性质不变。在电压-无功功率控制模式下,由于调档对无功功率的影响很小,因此运行点可能进入不了9区而是又进入小区,从而产生振荡动作现象。在电压-功率因数控制模式下,由于调档对功率因数无影响,运行点又回到小区,产生振荡动作现象。假设分接头已调至最高档或已被闭锁,则VQC执行强切电容动作,产生电容投切振荡现象。b点情况和a点类似,当变电站负荷取恒定功率模型时,也可作类似分析。应注意到,九区图策略对控制设备的动作次数使无限制的,而变电站对分接头的日调节次数由严格的限制,一旦分接头到达日最大调节次数或检修最大调节次数将会被闭锁,由此可能会产生振荡动作现象。另外如果无功功率上下限之差设置偏小,也会造成电容器组的投切振荡现象。由于九区图的分区控制策略师基于理想的情况的电压、无功控制,在实际控制中除会出现振荡动作现象外还存在着其他一些问题[6]:1〕九区图的电压、无功上下限是随季节、峰谷、时段而变的,不易调整;由于调档和投切电容对变电站的电压、无功均有影响,当*些区域对两类设备的控制都起作用时,难以区分哪一类效果更好,因此九区图对于现场运行人员而言是比较难以掌握的。2〕由于九区图各区域控制策略都是依据实时电压和无功进展的,因此在电压越限、无功不越限的情况下,根本控制策略师调节有载调压变压器分接头。而实际上个变电站每天的有功和无功负荷的变化有一定的规律性,当无功负荷曲线上出现由谷转峰的变化趋势时,则会先出现电压越下限,紧接着又出现无功越上限的情况。九区图的控制过程为先由5区调节分接头进去9区,紧接着又进去3区,则再投电容又恢复进去9区。如果VQC能够判定电压越限是由无功迅速变化引起的,则完全可以在电压和无功不越限时就直接提前投切电容器,从而减少分接头的调节次数并提高电压合格率。3〕由于实时系统电压、有功和无功负荷变化的随机性,九区图对电压波动的控制适应性差。4〕对于主变低压侧母线在多路用户负荷下要求按逆调压原则调压,九区图很难实现。5〕九区图中调档的策略对*些区域的控制可能会造成系统电压失稳。综上所述,当装置采用传统的九区图电压、无功控制策略时,当系统运行到临界区域容易造成系统振荡,装置的频繁动作,这样会造成电气设备的损坏和降低其使用寿命。3应用实例3.1变电站根本情况110kV东城站在系统中的位置如图3-1所示,正常方式由110kV成东线供,通过缗东线与**电网相联。该站2004年建成投运,一台主变容量31.5MVA,作为“提高输送能力〞的一项措施,在变电站投产时需加装无功补偿电容器。白庄站白庄站成武站东城站缗城站11558155813112111图1东城站在系统中的位置图3-1东城站在系统中的位置3.2计算补偿容量依据?电力系统电压和无功电力技术导则?、?国家电网公司电力系统无功补偿配置技术原则?要求,从不同考虑点计算得出不同的容量要求,求其最大值做为变电站无功补偿容量的依据。1〕按补偿主变压器无功损耗计算东城站1号主变参数及110kV侧、35kV侧负荷见表3-1.表3-1110kV东城站1号主变压器参数额定容量/MVA空载损耗P0/kW空载电流I0/%短路电压Uk12(%)短路损耗Pk31/kW35kV侧负荷/MVA31.5/31.5/31.526.0820.2610.02154.05816.4+j7.5短路电压Uk23/%短路电压Uk13/%短路损耗Pk12/kW短路损耗Pk23/kW10kV侧负荷/MVA7.115.77145.426123.943.5+j1.8空载漏磁无功损耗Q0≈S0=I0%SN×10-2=0.26×31.5×10-2=0.08Mvar额定负载漏磁功率Qk12=Uk12%S2N×10-2=10.02×31.5×10-2=31.5MvarQk13=Uk13%S3N×10-2=15.77×31.5×10-2=4.96MvarQk23=Uk23%S3N×10-2=7.1×31.5×10-2=2.23Mvar=QK1==2.94MvarQK12+QK13=QK1==2.94Mvar22=QK1==0.21MvarS2N2〔QK12+QK23=QK1==0.21Mvar22==2.02MvarQK3=S3N2〔QK13+QK23==2.02MvarQK3=22=0.21×△QK2=QK2×=0.068MvarS2=0.21×△QK2=QK2×=0.068MvarS2N231.522=2.02×△QK3=QK3×=0.03MvarS=2.02×△QK3=QK3×=0.03MvarS3N231.522=QK1×△QK1=QK1×S12〔P2+△PK2+P3+△PK3〕2+(Q2+△QK2+Q3+=QK1×△QK1=QK1×S1N2S1N2≈QK1×〔P2+P3〕2+(Q2+△QK2+Q3+△≈QK1×S1N2=2.94×(16.4+3.5)2+(7.5+0.068+1.8+0.03)=2.94×31.522=1.435Mvar变压器无功损耗△QT=Q0+△QK1+△QK2+△QK3=0.08+1.435+0.068+0.03=1.61Mvar补偿容量QC+△QT=1.61Mvar2〕按补偿变压器无功损耗同时补偿输电线路无功损耗计算110kV成东线型号为LGJ-240,R1=0.13Ω/km,*1=0.416Ω/km,线路长度4.56km成东线带东城站负荷时线路无功损耗△QL=I2*L=*Ll*Ll=*△QL=I2*L=*Ll*Ll=*Ll=√3U3U23U2×0.416×4.56=20.394×0.416×4.56=3×1102=0.05Mvar补偿容量QC=△QT+△QL+1.61+0.05=1.65Mvar3〕按东城站最高负荷时变压器高压侧功率因数不低于0.95计算。110kV东城站1号主变压器高压侧最高负荷Sma*=P+Q=20.394+j12.5功率因数Cosφ==0.85=P20.394Cosφ==0.85=√P2+Q2√20.3942+12.52补偿容量QC=△QT=P(tgφ-tgarccos0.95)=20.394×〔tgarccos0.85-tgarccos0.95〕=5.93Mvar220kV以及以上电压等级变电站还需要考虑满足电压的要求配置无功补偿电容器。3.3补偿容量确实定为满足各项要求,取三种计算方式的最大值,补偿容量应为Q=MA*(Qc)=5.93Mvar。4结论4.1结论电压是电力系统电能质量的主要指标之一,是反映电力系统无功平衡和无功合理分布的标志。电力系统中的电压水平和无功功率状况密切相关,合理配置无功电源,使无功功率就近平衡,不仅可以提高电
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 28504.4-2025掺稀土光纤第4部分:掺铒光纤特性
- 2025年大学第四学年(动物医学)动物医学综合实训试题及答案
- 2025年高职(工业机器人技术)故障排查阶段测试题及答案
- 2026年水利施工(排水管道施工)试题及答案
- 2025年高职(应用化工技术)应用化工阶段测试试题及答案
- 2025年高职物联网工程(传感器应用)试题及答案
- 2025年高职水环境监测与治理(水环境监测)试题及答案
- 2025年大学二年级(土木工程)结构力学基础试题及答案
- 2025年中职(模具制造技术)模具零件加工专项测试试题及答案
- 2025年中职(酒店管理)酒店安全实训阶段测试题及答案
- 2026年煤矿矿长证考试题库及答案
- 危重病人营养支持教案
- 《毛泽东思想概论》与《中国特色社会主义理论体系概论》核心知识点梳理及100个自测题(含答案)
- 分级护理质量考核标准
- 电梯安装文明施工方案
- 天津市专升本高等数学历年真题(2016-2025)
- DB23∕T 3314-2022 黑龙江省土壤污染防治风险筛选指导值(试行)
- 2025年福建省年省直遴选笔试真题及答案
- 脚手架安全培训
- 2025年检验检测机构内部质量控制标准模拟考试试题试卷
- 2025云南昆明元朔建设发展有限公司第一批收费员招聘20人考试参考试题及答案解析
评论
0/150
提交评论