2023年河北省张家口市尚义县第一中学高一数学第二学期期末复习检测模拟试题含解析_第1页
2023年河北省张家口市尚义县第一中学高一数学第二学期期末复习检测模拟试题含解析_第2页
2023年河北省张家口市尚义县第一中学高一数学第二学期期末复习检测模拟试题含解析_第3页
2023年河北省张家口市尚义县第一中学高一数学第二学期期末复习检测模拟试题含解析_第4页
2023年河北省张家口市尚义县第一中学高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,平面ABCD⊥平面EDCF,且四边形ABCD和四边形EDCF都是正方形,则异面直线BD与CE所成的角为()A. B. C. D.2.若直线被圆截得弦长为4,则的最小值是()A.9 B.4 C. D.3.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.4.已知四棱锥中,平面平面,其中为正方形,为等腰直角三角形,,则四棱锥外接球的表面积为()A. B. C. D.5.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A. B. C. D.6.若,满足,则的最大值为().A. B. C. D.7.在数列中,,且数列是等比数列,其公比,则数列的最大项等于()A. B. C.或 D.8.函数的定义域是().A. B. C. D.9.若一个数列的前三项依次为6,18,54,则此数列的一个通项公式为()A. B. C. D.10.已知直三棱柱的所有顶点都在球0的表面上,,,则=()A.1 B.2 C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角所对边长分别为,若,则的最小值为__________.12.方程,的解集是__________.13.已知a,b为常数,若,则______;14.若函数的图象过点,则___________.15.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.16.已知数列的通项公式为,是其前项和,则_____.(结果用数字作答)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的单调递减区间;(2)若将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数的图象关于轴对称.求的最小值18.已知等比数列{an}的前n项和为Sn,S3=,S6=.(1)求数列{an}的通项公式an;(2)令bn=6n-61+log2an,求数列{bn}的前n项和Tn.19.在等比数列中,,.(1)求的通项公式;(2)若,求数列的前项和.20.如图,在平行四边形中,边所在直线的方程为,点.(Ⅰ)求直线的方程;(Ⅱ)求边上的高所在直线的方程.21.已知点,,均在圆上.(1)求圆的方程;(2)若直线与圆相交于,两点,求的长;(3)设过点的直线与圆相交于、两点,试问:是否存在直线,使得恰好平分的外接圆?若存在,求出直线的方程;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,利用向量法能求出异面直线BD与CE所成的角.【详解】∵平面ABCD⊥平面EDCF,且四边形ABCD和四边形EDCF都是正方形,∴以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,设AB=1,则B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),设异面直线BD与CE所成的角为θ,则cosθ,∴θ.∴异面直线BD与CE所成的角为.故选:C.【点评】本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.2、A【解析】

圆方程配方后求出圆心坐标和半径,知圆心在已知直线上,代入圆心坐标得满足的关系,用“1”的代换结合基本不等式求得的最小值.【详解】圆标准方程为,圆心为,半径为,直线被圆截得弦长为4,则圆心在直线上,∴,,又,∴,当且仅当,即时等号成立.∴的最小值是1.故选:A.【点睛】本题考查用基本不等式求最值,解题时需根据直线与圆的位置关系求得的关系,然后用“1”的代换法把凑配出可用基本不等式的形式,从而可求得最值.3、D【解析】

根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.4、D【解析】

因为为等腰直角三角形,,故,则点到平面的距离为,而底面正方形的中心到边的距离也为,则顶点正方形中心的距离,正方形的外接圆的半径为,故正方形的中心是球心,则球的半径为,所以该几何体外接球的表面积,应选D.5、B【解析】

利用古典概型概率公式求解即可.【详解】设三件正品分别记为,一件次品记为则从三件正品、一件次品中随机取出两件,取出的产品可能为,共6种情况,其中取出的产品全是正品的有3种所以产品全是正品的概率故选:B【点睛】本题主要考查了利用古典概型概率公式计算概率,属于基础题.6、D【解析】作出不等式组,所表示的平面区域,如图所示,当时,可行域为四边形内部,目标函数可化为,即,平移直线可知当直线经过点时,直线的截距最大,从而最大,此时,,当时,可行域为三角形,目标函数可化为,即,平移直线可知当直线经过点时,直线的截距最大,从而最大,,综上,的最大值为.故选.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.注意解答本题时不要忽视斜率不存在的情形.7、C【解析】

在数列中,,,且数列是等比数列,其公比,利用等比数列的通项公式可得:.可得,利用二次函数的单调性即可得出.【详解】在数列中,,,且数列是等比数列,其公比,.,.由或8时,,或9时,,数列的最大项等于或.故选:C.【点睛】本题考查等比数列的通项公式、累乘法、二次函数的单调性,考查推理能力与计算能力,属于中档题.8、C【解析】函数的定义域即让原函数有意义即可;原式中有对数,则故得到定义域为.故选C.9、C【解析】

,,,可以归纳出数列的通项公式.【详解】依题意,,,,所以此数列的一个通项公式为,故选:C.【点睛】本题考查了数列的通项公式,主要考查归纳法得到数列的通项公式,属于基础题.10、B【解析】

由题得在底面的投影为的外心,故为的中点,再利用数量积计算得解.【详解】依题意,在底面的投影为的外心,因为,故为的中点,,故选B.【点睛】本题主要考查平面向量的运算,意在考查学生对该知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据余弦定理,可得,然后利用均值不等式,可得结果.【详解】在中,,由,所以又,当且仅当时取等号故故的最小值为故答案为:【点睛】本题考查余弦定理以及均值不等式,属基础题.12、【解析】

用正弦的二倍角公式展开,得到,分两种情况讨论得出结果.【详解】解:即,即:或.①由,,得.②由,,得或.综上可得方程,的解集是:故答案为【点睛】本题考查正弦函数的二倍角公式,以及特殊角的正余弦值.13、2【解析】

根据极限存在首先判断出的值,然后根据极限的值计算出的值,由此可计算出的值.【详解】因为,所以,又因为,所以,所以.故答案为:.【点睛】本题考查根据极限的值求解参数,难度较易.14、【解析】

由过点,求得a,代入,令,即可得到本题答案【详解】因为的图象过点,所以,所以,故.故答案为:-5【点睛】本题主要考查函数的解析式及利用解析式求值.15、【解析】

利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【点睛】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.16、.【解析】

由题意知,数列的偶数项成等差数列,奇数列成等比数列,然后利用等差数列和等比数列的求和公式可求出的值.【详解】由题意可得,故答案为.【点睛】本题考查奇偶分组求和,同时也考查等差数列求和以及等比数列求和,解题时要得出公差和公比,同时也要确定出对应的项数,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,.(2).【解析】

(1)根据诱导公式,二倍角公式,辅助角公式把化为的形式,再根据复合函数单调性求解;(2)先根据变换关系得到函数解析式,所得函数的图象关于轴对称,则时,.【详解】(1)当即时,函数单调递减,所以函数的单调递减区间为.(2)将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数为,若图象关于轴对称,则,即,解得,又,则当时,有最小值.【点睛】本题主要考查三角函数的性质和图像的变换.关键在于化为的形式,三角函数的平移变换是易错点.18、(1)an=a1qn-1=2n-2;(2)Tn=n2-n..【解析】

(1)根据等比数列的通项公式和前项求得.(2)将代入中,得是等差数列,再求和.【详解】(1)∴,解得∴(2)∴∴数列是等差数列.又∴【点睛】本题考查等比数列和等差数列的通项和前项和,属于基础题.19、(1);(2).【解析】

(1)设出通项公式,利用待定系数法即得结果;(2)先求出通项,利用错位相减法可以得到前项和.【详解】(1)因为,,所以,解得故的通项公式为.(2)由(1)可得,则,①,②①-②得故.【点睛】本题主要考查等比数列的通项公式,错位相减法求和,意在考查学生的分析能力及计算能力,难度中等.20、解:(Ⅰ)∵是平行四边形直线CD的方程是,即(Ⅱ)∵CE⊥ABCE所在直线方程为,.【解析】略21、(1);(2);(3)存在,和.【解析】

(1)根据圆心在,的中垂线上,设圆心的坐标为,根据求出的值,从而可得结果;(2)利用点到直线的距离公式以及勾股定理可得结果;(3)首先验证直线的斜率不存在时符合题意,然后斜率存在时,设出直线方程,与圆的方程联立,利用韦达定理,根据列方程求解即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论