版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,当上恰好取得5个最大值,则实数的取值范围为()A. B. C. D.2.设是平面内的一组基底,则下面四组向量中,能作为基底的是()A.与 B.与C.与 D.与3.已知两点,,则()A. B. C. D.4.在中,点是边上的靠近的三等分点,则()A. B.C. D.5.若函数,又,,且的最小值为,则正数的值是()A. B. C. D.6.已知数列的前项和为,直线与圆:交于两点,且.记,其前项和为,若存在,使得有解,则实数取值范围是()A. B. C. D.7.设满足约束条件,则的最小值为()A.3 B.4 C.5 D.108.若a<b<0,则下列不等式关系中,不能成立的是()A. B. C. D.9.某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.10.设,则下列不等式恒成立的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期是________.12.数列的通项,前项和为,则____________.13.不等式的解集为_________________;14.已知函数fx=cosx+2cosx,15.若,则______(用表示).16.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量与向量的夹角为,且,.(1)求;(2)若,求.18.已知函数.(1)求的最小正周期.(2)求在区间上的最小值.19.正项数列:,满足:是公差为的等差数列,是公比为2的等比数列.(1)若,求数列的所有项的和;(2)若,求的最大值;(3)是否存在正整数,满足?若存在,求出的值;若不存在,请说明理由.20.已知a,b,c分别为ΔABC三个内角A,B,C的对边,且.(1)求角A的大小;(2)若,且ΔABC的面积为,求a的值;(3)若,求的范围.21.已知数列{an}和{bn}满足a1=1,b1=0,,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先求出取最大值时的所有的解,再解不等式,由解的个数决定出的取值范围.【详解】设,所以,解得,所以满足的值恰好只有5个,所以的取值可能为0,1,2,3,4,由,故选C.【点睛】本题主要考查正弦函数的最值以及不等式的解法,意在考查学生的数学运算能力.2、C【解析】
利用向量可以作为基底的条件是,两个向量不共线,由此分别判定选项中的两个向量是否共线即可.【详解】由是平面内的一组基底,所以和不共线,对应选项A:,所以这2个向量共线,不能作为基底;对应选项B:,所以这2个向量共线,不能作为基底;对应选项D:,所以这2个向量共线,不能作为基底;对应选项C:与不共线,能作为基底.故选:C.【点睛】本题主要考查基底的定义,判断2个向量是否共线的方法,属于基础题.3、C【解析】
直接利用两点间距离公式求解即可.【详解】因为两点,,则,故选.【点睛】本题主要考查向量的模,两点间距离公式的应用.4、A【解析】
将题中所体现的图形画出,可以很直观的判断向量的关系.【详解】如图有向量运算可以知道:,选择A【点睛】考查平面向量基本定理,利用好两向量加法的计算原则:首尾相连,首尾相接.5、D【解析】,由,得,,由,得,则,当时,取得最小值,则,解得,故选D.6、D【解析】
根据题意,先求出弦长,再表示出,得到,求出数列的通项公式,再表示出,用错位相减求和求出,再求解即可.【详解】根据题意,圆的半径,圆心到直线的距离,所以弦长,所以,当时,,所以,时,,所以,得,所以数列是以为首项,为公比的等比数列,所以,,,所以,,,所以,由有解,,只需大于的最小值即可,因为,所以,所以.故选:D【点睛】本题主要考查求圆的弦长、由和求数列通项、错位相减求数列的和和解不等式有解的情况,考查学生的分析转化能力和计算能力,属于难题.7、B【解析】
结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得,当取到点时得到最小值,即故选【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法8、B【解析】
根据的单调性,可知成立,不成立;根据和的单调性,可知成立.【详解】在上单调递减,成立又,不成立在上单调递增,成立在上单调递减,成立故选:【点睛】本题考查利用函数单调性比较大小的问题,关键是能够建立起合适的函数模型,根据自变量的大小关系,结合单调性得到结果.9、D【解析】
先还原几何体,再根据形状求表面积.【详解】由三视图知,该几何体的直观图如图所示,其表面积为,故选.【点睛】本题考查三视图以及几何体表面积,考查空间想象能力以及基本求解能力,属中档题.10、C【解析】
利用不等式的性质,合理推理,即可求解,得到答案.【详解】因为,所以,所以A项不正确;因为,所以,,则,所以B不正确;因为,则,所以,又因为,则,所以等号不成立,所以C正确;由,所以,所以D错误.【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的性质,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据函数的周期公式计算即可.【详解】函数的最小正周期是.故答案为【点睛】本题主要考查了正切函数周期公式的应用,属于基础题.12、7【解析】
根据数列的通项公式,求得数列的周期为4,利用规律计算,即可求解.【详解】由题意,数列的通项,可得,,得到数列是以4项为周期的形式,所以=.故答案为:7.【点睛】本题主要考查了数列的求和问题,其中解答中根据数列的通项公式求得数列的周期,以及各项的变化规律是解答的关键,属于基础题,着重考查了.13、【解析】
根据绝对值定义去掉绝对值符号后再解不等式.【详解】时,原不等式可化为,,∴;时,原不等式可化为,,∴.综上原不等式的解为.故答案为.【点睛】本题考查解绝对值不等式,解绝对值不等式的常用方法是根据绝对值定义去掉绝对值符号,然后求解.14、(0,1)【解析】
画出函数f(x)在x∈0,2【详解】解:画出函数y=cosx+2|cosx|=3cos以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【点睛】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.15、【解析】
直接利用诱导公式化简求解即可.【详解】解:,则,故答案为:.【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力,属于基础题.16、【解析】
根据茎叶图中数据和中位数的定义可构造方程求得.【详解】甲组数据的中位数为,解得:故答案为:【点睛】本题考查茎叶图中中位数相关问题的求解,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)对等式两边同时平方,利用平面向量数量积的定义以及数量积的运算性质,可以求出;(2)根据两个非零向量互相垂直等价于它们的数量积为零,可以得到方程,解方程可以求出的值.【详解】解:(1)由得,那么;解得或(舍去)∴;(2)由得,那么因此∴.【点睛】本题考查了求平面向量模的问题,考查了两个非零平面向量互相垂直的性质,考查了平面向量数量积的定义及运算性质,考查了数学运算性质.18、(1);(2).【解析】试题分析:本题主要考查倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先利用倍角公式将降幂,再利用两角和的正弦公式将化简,使之化简成的形式,最后利用计算函数的最小正周期;(Ⅱ)将的取值范围代入,先求出的范围,再数形结合得到三角函数的最小值.试题解析:(Ⅰ)∵,∴的最小正周期为.(Ⅱ)∵,∴.当,即时,取得最小值.∴在区间上的最小值为.考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值.19、(1)84;(2)1033;(3)存在,【解析】
(1)由题意可得:,即为:2,4,6,8,10,12,14,16,8,4;可得的值;(2)由题意可得,故有;即,即必是2的整数幂,要最大,必需最大,,可得出的最大值;(3)由是公差为的等差数列,是公比为2的等比数列,可得与,可得k与m的方程,一一验算k的值可得答案.【详解】解:(1)由已知,故为:2,4,6,8,10,12,14,16;公比为2,则对应的数为2,4,8,16,从而即为:2,4,6,8,10,12,14,16,8,4;此时(2)是首项为2,公差为2的等差数列,故,从而,而首项为2,公比为2的等比数列且,故有;即,即必是2的整数幂又,要最大,必需最大,,故的最大值为,所以,即的最大值为1033(3)由数列是公差为的等差数列知,,而是公比为2的等比数列,则,故,即,又,,则,即,则,即显然,则,所以,将,代入验证知,当时,上式右端为8,等式成立,此时,综上可得:当且仅当时,存在满足等式【点睛】本题主要考查等差数列、等比数列的通项公式及等差数列、等比数列前n项的和,属于难题,注意灵活运用各公式解题与运算准确.20、(1)(2)(3)【解析】
(1)利用正弦定理化简即得A的大小;(2)先求出bc,b+c的值,再利用余弦定理求出a的值;(3)先求出,再利用三角函数的性质求b+c的范围.【详解】(1)由正弦定理得,,即...(2)由可得.∴由余弦定理得:(3)由正弦定理得若,则因为所以所以.所以的范围【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角函数最值的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.21、(1)见解析;(2),.【解析】
(1)可通过题意中的以及对两式进行相加和相减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医学科普降血脂
- 2025年黄淮学院招聘高层次人才89名考试核心题库及答案解析
- 2025长江产业集团创新投资事业部一线基金管理团队社会招聘4人(二)考试核心题库及答案解析
- 2025年碳足迹核算技术协议
- 2026河北省定向长安大学选调生招录笔试重点试题及答案解析
- 2025年碳中和园区光伏发电服务协议
- 2026云南金江沧源水泥工业有限公司专业技术岗招聘5人考试核心试题及答案解析
- 2025年水电工程运维合同协议
- 2025浙江湖州房信房地产开发建设有限公司招聘8人笔试参考题库附带答案详解(3卷合一版)
- 2025江西赣州市国投集团公开选聘新能源公司总经理(职业经理人)1人笔试参考题库附带答案详解(3卷)
- 养老院老年人健康档案 (二)
- 物业公司动火管理制度
- 《胃癌根治术腹腔镜技术》课件
- 六年级下册英语书湘少版单词表
- 2025中国电信校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- AI与智慧图书馆双向赋能
- 《中药的现代化》课件
- 生物专业英语翻译-蒋悟生
- 高速铁路客运规章(第2版)课件 项目五 高速铁路旅客运输服务管理
- 基础医学概论期末考试试卷
- 自愿离婚协议书标准样本(八篇)
评论
0/150
提交评论