臭氧层形成与破坏课件_第1页
臭氧层形成与破坏课件_第2页
臭氧层形成与破坏课件_第3页
臭氧层形成与破坏课件_第4页
臭氧层形成与破坏课件_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

臭氧层形成与破坏

环评3101第三小组

刘尧芳夏淑萍蒋雨栖何伟伟张斌目录案例导入1案例分析2知识链接3案例导入南极大陆的面积约为1400万平方公里,其上空的臭氧层保护着地球生物免遭太阳紫外线的侵害。但日本气象厅根据观测说,今年南极上空的臭氧层空洞的扩展比往年提前了1~2周,空洞面积在9月10日已超过1998年2724万平方公里的高峰值,达2918万平方公里,约为南极大陆面积的2.08倍。1998年高空臭氧的被破坏量为8908万吨,为历史之最。但观测表明,2000年9月12日的高空臭氧的被破坏量突破了这一记录,达到9622万吨,创历史新高。案例分析美国科学家莫里纳和罗兰德提出,人工合成的一些含氯和含溴的物质是造成南极臭氧洞的元凶,最典型的是氟氯碳化合物(CFC,俗称氟里昂)和含溴化合物哈龙(Halon)。越来越多的科学证据证实,氯和溴在平流层通过催化化学过程破坏臭氧是造成南极臭氧洞的根本原因。那么,氟里昂和哈龙是怎样进入平流层,又是如何引起臭氧层破坏的呢?就重量而言,人为释放的CFC和Halon的分子都比空气分子重,但这些化合物在对流层是化学惰性的,即使最活泼的大气组分———自由基对CFC和Halon的氧化作用也微乎其微。因此它们在对流层十分稳定,不能通过一般的大气化学反应去除。经过一两年的时间,这些化合物会在全球范围内的对流层分布均匀,然后主要在热带地区上空被大气环流带入到平流层,风又将它们从低纬度地区向高纬度地区输送,在平流层内均匀混合。在平流层内,强烈的紫外线照射使CFC和Halon分子发生解离,释放出高活性的原子态的氯和溴,氯和溴原子也是自由基。氯原子自由基和溴原子自由基就是破坏臭氧层的主要物质,它们对臭氧的破坏是以催化的方式进行的。溴原子自由基也以同样的过程破坏臭氧,因此也是催化剂。据估算,一个氯原子自由基可以破坏104—105个臭氧分子,而由Halon释放的溴原子自由基对臭氧的破坏能力是氯原子的30—60倍。而且,氯原子自由基和溴原子自由基之间还存在协同作用,即二者同时存在时,破坏臭氧的能力要大于二者简单的加和。实际上,当CFC和Halon进入平流层后,通常是以化学惰性的形态而存在,并无原子态的活性氯和溴的释放。南极的科学考察和实验室的研究都证明,化学惰性的ClONO2和HCl在平流层云表面会发生化学反应,结果造成Cl2和HOCl2组分的不断积累。因此,南极臭氧洞的形成是包含大气化学、气象学变化的非均相的复杂过程,但其产生根源是地球表面人为活动产生的氟里昂和哈龙,曾经是一个谜团的臭氧洞得到了清晰的定量的科学解释。但是令人忧虑的是,CFC和Halon具有很长的大气寿命,一旦进入大气就很难去除,这意味着它们对臭氧层的破坏会持续一个漫长的过程,臭氧层正受到来自人类活动的巨大威胁。知识链接大气的成分大气层结构臭氧层的定义形成分布生成机理作用危害及防治对策大气1.大气的主要组成成分及其作用三大组成成分作用干洁空气水汽固体杂质氧氮二氧化碳臭氧等氧气占大气体积的21%,是人类和一切生物维持生命活动所必须的物质。占大气体积的78%,是生物体的基本成分。植物进行光合作用的重要原料;对地面具体保温作用。吸收太阳强紫外线,保护地球生命;少量紫外线具有杀菌作用在大气中的含量很少,但变化很大。影响地面温度,是成云致雨的必要条件。大气层的结构臭氧层定义:臭氧层是指大气层的平流层中臭氧浓度相对较高的部分,其主要作用是吸收短波紫外线。主要来源:臭氧层、雷电作用等。臭氧层的时空分布

在标准状态下,全球臭氧层的平均厚度约为300DU(Dobson,单位DU,是表征平流层O3总量的最常用的单位)。臭氧层在大气中是极其脆弱的一层气体,如果在0℃下,沿着垂直方向将大气中的臭氧全部压缩到一个大气压,那么臭氧层的总厚度只有3mm左右。分布规律臭氧层总量在地理分布上是不均匀的,其最低值出现在赤道附近,随着维度的增大,抽样厚度也逐渐增大。南半球臭氧总量最大值位于南纬550~650附近;北半球臭氧总量最大值位于北纬650~750附近。接近两极地区臭氧厚度开始减少。大气中臭氧总量还呈规律性的季节变化,其最大值出现在两个半球的春季,最小值出现在秋季。最低值出现在赤道地区,约260DU55°S-65°S,南半球最大值340DU65°N-75°N,南半球最大值390DU臭氧形成后:由于其比重大于氧气,会逐渐的向臭氧层的底层降落,在降落过程中随着温度的变化(上升),臭氧不稳定性愈趋明显,再受到长波紫外线的照射,再度还原为氧。臭氧层就是保持了这种氧气与臭氧相互转换的动态平衡。臭氧层的作用其一为保护作用,臭氧层能够吸收太阳光中的波长306.3nm以下的紫外线,主要是一部分UV—B(波长290~300nm)和全部的UV—C(波长<290nm=,保护地球上的人类和动植物免遭短波紫外线的伤害。只有长波紫外线UV-A和少量的中波紫外线UV-B能够辐射到地面,长波紫外线对生物细胞的伤害要比中波紫外线轻微得多。所以臭氧层犹如一件保护伞保护地球上的生物得以生存繁衍。其二为加热作用,臭氧吸收太阳光中的紫外线并将其转换为热能加热大气,由于这种作用大气温度结构在高度50km左右有一个峰,地球上空15~50km存在着升温层。正是由于存在着臭氧才有平流层的存在。而地球以外的星球因不存在臭氧和氧气,所以也就不存在平流层。大气的温度结构对于大气的循环具有重要的影响,这一现象的起因也来自臭氧的高度分布。其三为温室气体的作用,在对流层上部和平流层底部,即在气温很低的这一高度,臭氧的作用同样非常重要。如果这一高度的臭氧减少,则会产生使地面气温下降的动力。因此,臭氧的高度分布及变化是极其重要的。目前,不仅在南极,在北极上空也出现了臭氧减少的现象,美、日、英、俄等国家联合观测发现,北极上空臭氧层也减少了20%,已形成了面积约为南极臭氧空洞三分之一的北极臭氧空洞。在被称为是世界上“第三极”的青藏高原,中国大气物理及气象学者的观测也发现,青藏高原上空的臭氧正在以每10年2.7%的速度减少,已经成为大气层中的第三个臭氧空洞。臭氧破坏的原因人为消耗臭氧层的物质主要是:广泛用于冰箱和空调制冷、泡沫塑料发泡、电子器件清洗的氯氟烷烃(CFxCl4-x,又称Freon),以及用于特殊场合灭火的溴氟烷烃(CFXBr4-x,又称Halons哈龙)等化学物质。消耗臭氧层的物质,在大气的对流层中是非常稳定的,可以停留很长时间。CF2C12在对流层中寿命长达120年左右。因此,这类物质可以扩散到大气的各个部位,但是到了平流层后,就会在太阳的紫外辐射下发生光化反应,释放出活性很强的游离氯原子或溴原子,参与导致臭氧损耗的一系列化学反应:臭氧层破坏的催化反应机理

(1)水蒸气、甲烷等的影响平流层中存在的水蒸气、甲烷,可与激发态氧原子形成含氢物质(H,OH与HO2),例如H2O+O→2HOCH4+O→CH3+HOH2+O→H+HO这些物质可造成O3损耗约10%。反应:HO+O3→HO2+O2

HO2+O→HO+O2总反应:

O+O3→2O2(2)·Ox的催化作用平流层中的·2O(超音速飞机排放)可为紫外线辐射分解为·2和O,其中,约有1%的·2O又与激发态的氧原子结合,经氧化后产生·O和·O2·2O+O→2·O·O+O3→·O2+O2经氧化后产生·O和·O2是造成O3损耗的重要过程,估计约占O3总损耗量的70%。·O+O3→·O2+O2

·O2+O→·O+O2总反应:

O+O3→2O2(3)天然或人为的氯、溴及其氧化物的催化作用

平流层中ClOx的天然源是海洋生物产生的CH3Cl:CH3Cl+h·→CH3+Cl(该过程贡献cl很少)

ClOx的人为源是制冷剂(主要来源)CFCl3+h·→CFCl2+ClCF2Cl2+h·→CF2Cl+Cl光解产生的Cl可破坏O3Cl+O3→ClO+O2

O+ClO→Cl+O2总反应:

O+O3→2O2(4)总结总结上述O3层破坏的反应过程,可得到:Y+O3→YO+O2

O+YO→Y+O2总反应:

O+O3→2O2/Y思考题臭氧层的破坏造成的危害主要表现在哪几个方面?保护臭氧层的个人行为有哪些?臭氧层破坏的危害对人类健康的危害

臭氧层被破坏后,其吸收紫外线的能力大大降低,使得人类接受过量紫外线辐射的机会大大增加了。一方面,过量的紫外线辐射会破坏人的免疫系统,使人的自身免疫系统出现障碍,患呼吸道系统传染性疾病的人数大量增加;另一方面,过量的紫外线辐射会增加皮肤癌的发病率。据统计,全世界范围内每年大约有10万人死于皮肤癌,大多数病例与过量紫外线辐射有关。臭氧层的臭氧每损耗1%,皮肤癌的发病率就会增加2%。另外,过量紫外线辐射还会诱发各种眼科疾病,如白内障、角膜肿瘤等。对陆地生态系统的危害

实验表明,过量的紫外线辐射会使植物叶片变小,减少了植物进行光合作用的面积,从而影响作物的产量同时,过量紫外线辐射还会影响到部分农作物种子的质量,使农作物更易受杂草和病虫害的损害。一项对大豆的初步研究表明,臭氧层厚度减少25%,大豆将会减产20%-25%。对水生生态系统的影响

研究结果表明,紫外线辐射的增加会直接引起浮游植物、浮游动物、幼体鱼类以及整个水生食物链的破坏。研究人员测定了南极地区UV-B辐射及其穿透水体的量的增加,证据证实天然浮游植物群落与臭氧的变化直接相关。

对臭氧空洞范围内和臭氧空洞以外地区的浮游植物进行比较的结果表明,浮游植物生产力下降与臭氧减少造成的UV-B辐射增加直接有关。一项研究表明,在冰川边缘地区的生产力下降了6%~12%。由于浮游生物是海洋食物链的基础,浮游生物种类和数量的减少还会影响鱼类和贝类生物的产量。另一项科学研究的结果显示,如果平流层臭氧减少了25%,浮游生物的初级生产力将下降10%,这将导致水面附近的生物减少35%。高层臭氧破坏增加低层臭氧造成的破坏

臭氧在平流层起保护作用,在地面却是有害污染物。光化学烟雾的主要成分—地面臭氧阻碍农作物和树木的生长,限制能见度,损害肺功能。植物遭到臭氧的侵袭后,叶面就产生大量的白色斑点,影响光合作用。因平流层臭氧损耗导致阳光紫外线辐射的增加会加速建筑、喷涂、包装及电线电缆等所用材料,尤其是聚合物材料的降解和老化变质。特别是在高温和阳光充足的热带地区,这种破坏作用更为严重。由于这一破坏作用造成的损失估计全球每年达到数十亿美元。

无论是人工聚合物,还是天然聚合物以及其它材料都会受到不良影响。当这些材料尤其是塑料用于一些不得不承受日光照射的场所时,只能靠加入光稳定剂和抗氧剂或进行表面处理以保护其不受日光破坏。阳光中UV-B辐射的增加会加速这些材料的光降解,从而限制了它们的使用寿命。研究结果已证实中波UV-B辐射对材料的变色和机械完整性的损失有直接的影响。解决臭氧层破坏问题的技术措施最根本的措施在于尽早开发代用品1985年,在联合国环境规划署的推动下,制定了保护臭氧层的《维也纳公约》。1987年,联合国环境规划署制定了《关于消耗臭氧层物质的蒙特利尔议定书》,对8种破坏臭氧层的物质(简称受控物质)提出了削减使用时间的要求。中国于1992年加入了《蒙特利尔协议书》。代用品的开发应考虑:1、具有优异的物化性能;2、价格适宜,能被市场接受;3、对臭氧破坏潜能低;4、温室效应潜能低回收和再生

开发CFCs回收再生技术对控制排放、节省资源,降低成本,代用品顺利转换等有重要的意义,而且这项技术还可以延用于代用品的回收。美国环保局认为美国CFCs消费量的2/3均可回收。回收再生的方法是一句CFCs的种类、排气量、浓度、生产员来选择的,以求经济合理及保证再生品的质量。IBM公司在原联邦德国的一家工厂的一个循环装置可回收本厂的70%--80%的容积;丹麦和挪威在使用的一种技术能在发泡阶段抽集氯氟烃,回收总排放量的40%--50%

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论