




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《向心加速度》教学设计教学重点1.理解匀速圆周运动中加速度的产生原因.2.掌握向心加速度的确定方法和计算公式.教学难点向心加速度方向的确定和公式的应用.三维目标知识与技能1.理解速度变化量和向心加速度的概念.2.知道向心加速度和线速度.角速度的关系式.3.能够运用向心加速度公式求解有关问题.过程与方法1.体验向心加速度的导出过程.2.领会推导过程中用到的数学方法.情感、态度与价值观培养学生的思维能力和分析问题的能力,培养学生探究问题的热情、乐于学习的品质.eq\o(\s\up7(),\s\do5(课前准备))教具准备:多媒体课件、实物投影仪等.知识准备:复习以前学过的加速度概念以及曲线运动的有关知识,并做好本节内容的预习.eq\o(\s\up7(),\s\do5(教学过程))导入新课思考:1.匀速圆周运动的速度是否改变?作圆周运动的物体是否具有加速度呢?2.做匀速圆周运动的物体受到的合力为零吗?为什么?3.描述匀速圆周运动快慢的各个物理量及其相互关系如何?eq\b\lc\\rc\(\a\vs4\al\co1(情景导入))通过前面的学习我们知道在现实生活中,物体都要在一定的外力作用下才能做曲线运动,如下列两图(课件展示).地球绕太阳做(近似的)匀速圆周运动小球绕桌面上的图钉做圆周运动对于图中的地球和小球,它们受到的外力沿什么方向?它们的加速度大小和方向如何确定?推进新课一、速度变化量引入:从加速度的定义式a=eq\f(Δv,Δt)可以看出,a的方向与Δv相同,那么Δv的方向又是怎样的呢?指导学生阅读教材中的“速度变化量”部分,引导学生在练习本上画出物体加速运动和减速运动时速度变化量Δv的图示.问题:1.速度的变化量Δv是矢量还是标量?2.如果初速度v1和末速度v2在同一直线上,如何表示速度的变化量Δv?3.如果初速度v1和末速度v2不在同一直线上,如何表示速度的变化量Δv?投影学生所画的图示,点评、总结并强调:结论:(1)直线运动中的速度变化量如果速度是增加的,它的变化量与初速度方向相同(甲);如果速度是减小的,其速度变化量就与初速度的方向相反(乙).(2)曲线运动中的速度变化量物体沿曲线运动时,初末速度v1和v2不在同一直线上,速度的变化量Δv同样可以用上述方法求得.例如,物体沿曲线由A向B运动,在A、B两点的速度分别为v1、v2.在此过程中速度的变化量如图所示.可以这样理解:物体由A运动到B时,速度获得一个增量Δv,因此,v1与Δv的矢量和即为v2.我们知道,求力F1和F2的合力F时,可以以F1、F2为邻边作平行四边形,则F1、F2所夹的对角线就表示合力F.与此类似,以v1和Δv为邻边作平行四边形,两者所夹的对角线就是v1和Δv的矢量和,即v2,如图所示.因为AB与CD平行且相等,故可以把v1、Δv、v2放在同一个三角形中,就得到如图所示的情形.这种方法叫矢量的三角形法.利用课件动态模拟不同情况下的Δv,帮助学生更直观地理解这个物理量.二、向心加速度1.向心加速度的方向阅读教材P21页“做一做”,动手作图并思考:问题:(1)在A、B两点画速度矢量vA和vB时,要注意什么?(2)将vA的起点移到B点时要注意什么?(3)如何画出物体由A点运动到B点时速度的变化量Δv?(4)Δv/Δt表示的意义是什么?(5)Δv与圆的半径平行吗?在什么条件下,Δv与圆的半径平行?让学生亲历知识的导出过程,体验成功的乐趣.讨论中要倾听学生的回答,必要时给学生以有益的启发和帮助,引导学生解决疑难,回答学生可能提出的问题.利用课件动态展示上述加速度方向的得出过程.结论:上面的推导不涉及“地球公转”“小球绕图钉转动”等具体的运动,结论具有一般性:做匀速圆周运动的物体加速度指向圆心,这个加速度称为向心加速度.2.向心加速度的大小引入:匀速圆周运动的加速度方向明确了,它的大小与什么因素有关呢?(1)公式推导指导学生按照书中“做一做”栏目中的提示,在练习本上推导出向心加速度大小的表达式,也就是下面这两个表达式:an=eq\f(v2,r)an=rω2巡视学生的推导情况,解决学生推导过程中可能遇到的困难,给予帮助,回答学生可能提出的问题.投影学生推导的过程,和学生一起点评、总结.推导过程如下:在图中,因为vA与OA垂直,vB与OB垂直,且vA=vB,OA=OB,所以△OAB与vA、vB、Δv组成的矢量三角形相似.用v表示vA和vB的大小,用Δl表示弦AB的长度,则有eq\f(Δv,v)=eq\f(Δl,r)或Δv=Δl·eq\f(v,r)用Δt除上式得eq\f(Δv,Δt)=eq\f(Δl,Δt)·eq\f(v,r)当Δt趋近于零时,eq\f(Δv,Δt)表示向心加速度a的大小,此时弧eq\x\to(AB)对应的圆心角θ很小,弧长和弦长相等,所以Δl=rθ,代入上式可得an=eq\f(Δv,Δt)=eq\f(rθ,Δt)·eq\f(v,r)=vω利用v=ωr可得an=eq\f(v2,r)或an=rω2.(2)对公式的理解引导学生思考并完成“思考与讨论”栏目中提出的问题,深化本节课所学的内容.强调:①在公式y=kx中,说y与x成正比的前提条件是k为定值.同理,在公式an=eq\f(v2,r)中,当v为定值时,an与r成反比;在公式an=rω2中,当ω为定值时,an与r成正比.因此,这两个结论是在不同的前提下成立的,并不矛盾.②对于大、小齿轮用链条相连时,两轮边缘上的点线速度必相等,即有vA=vB=v.又aA=eq\f(v2,rA),aB=eq\f(v2,rB),所以A、B两点的向心加速度与半径成反比.而小齿轮与后轮共轴,因此两者有共同的角速度,即有ωB=ωC=ω.又aB=rBω2,aC=rCω2,所以B、C两点的向心加速度与半径成正比.(3)向心加速度的几种表达式问题:除了上面的an=eq\f(v2,r)、an=rω2外,向心加速度还有哪些形式呢?先让学生思考,适时提示转速、频率、周期等因素.结论:联系ω=eq\f(2π,T)=2πf,代入an=rω2可得:an=eq\f(4π2,T2)r和an=4π2f2r.至此,我们常遇到的向心加速度表达式有以上五种.3.向心加速度的物理意义因为向心加速度方向始终指向圆心,与线速度方向垂直,只改变线速度的方向,不改变其大小,所以向心加速度是描述线速度方向变化快慢的物理量.eq\b\lc\\rc\(\a\vs4\al\co1(典例探究))(题目先课件展示,让学生思考后再给出解析内容)例1关于北京和广州随地球自转的向心加速度,下列说法中正确的是().A.它们的方向都沿半径指向地心B.它们的方向都在平行赤道的平面内指向地轴C.北京的向心加速度比广州的向心加速度大D.北京的向心加速度比广州的向心加速度小解析:如图所示,地球表面各点的向心加速度方向(同向心力的方向)都在平行赤道的平面内指向地轴.选项B正确,选项A错误.在地面上纬度为φ的P点,做圆周运动的轨道半径r=R0cosφ,其向心加速度为an=rω2=R0ω2cosφ.由于北京的地理纬度比广州的地理纬度高,北京随地球自转的半径比广州随地球自转的半径小,两地随地球自转的角速度相同,因此北京随地球自转的向心加速度比广州的小,选项D正确,选项C错误.答案:BD点评:因为地球自转时,地面上的一切物体都在垂直于地轴的平面内绕地轴做匀速圆周运动,它们的转动中心(圆心)都在地轴上,而不是地球球心,向心力只是引力的一部分(另一部分是重力),向心力指向地轴,所以它们的向心加速度也都指向地轴.例2如图所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点.左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,距小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上.若在传动过程中皮带不打滑,则().A.a点与b点的线速度大小相等B.a点与b点的角速度大小相等C.a点与c点的线速度大小相等D.a点与d点的向心加速度相等解析:如皮带不打滑,a、c两点的线速度相等,故C选项正确.又a、c两点半径不同,则角速度不同,由v=rω得ωa=2ωc.同一轮上各点角速度相等,所以B选项是不正确的.但同一轮上各点线速度不等,即b、c两点的线速度不等,所以b与a两点的线速度也不相等,A选项也不正确.向心加速度a=rω2,得a、d两点的向心加速度分别为aa=rωeq\o\al(2,a)和ad=4rωeq\o\al(2,d)=4r(eq\f(ωa,2))2=rωeq\o\al(2,a),所以aa=ad,选项D正确.答案:CDeq\b\lc\\rc\(\a\vs4\al\co1(课堂训练))1.关于向心加速度的物理意义,下列说法正确的是().A.它描述的是线速度方向变化的快慢B.它描述的是线速度大小变化的快慢C.它描述的是向心力变化的快慢D.它描述的是角速度变化的快慢解析:向心加速度不改变线速度的大小,只改变其方向.答案:A2.一小球被细线拴着做匀速圆周运动,其半径为R,向心加速度为a,则().A.小球相对于圆心的位移不变B.小球的线速度为eq\r(Ra)C.小球在时间t内通过的路程s=eq\r(a/Rt)D.小球做圆周运动的周期T=2πeq\r(R/a)解析:小球做匀速圆周运动,各时刻相对圆心的位移大小不变,但方向时刻在变.由a=eq\f(v2,R)得v2=Ra,所以v=eq\r(Ra)在时间t内通过的路程s=vt=teq\r(Ra)做圆周运动的周期T=eq\f(2π,ω)=eq\f(2πR,v)=eq\f(2πR,\r(Ra))=2πeq\r(\f(R,a)).答案:BD3.由于地球自转,比较位于赤道上的物体1与位于北纬60°的物体2,则().A.它们的角速度之比ω1∶ω2=2∶1B.它们的线速度之比v1∶v2=2∶1C.它们的向心加速度之比a1∶a2=2∶1D.它们的向心加速度之比a1∶a2=4∶1解析:同在地球上,物体1与物体2的角速度必相等.设物体1的轨道半径为R,则物体2的轨道半径为Rcos60°,所以v1∶v2=ωR∶ωRcos60°=2∶1a1∶a2=ω2R∶ω2Rcos60°=2∶1.答案:BC4.如图为甲.乙两球做匀速圆周运动时向心加速度随半径变化的图象,其中甲的图线为双曲线.由图象可知,甲球运动时,线速度大小______,角速度______;乙球运动时,线速度大小______,角速度______.(填“变化”或“不变”,下同)解析:由图可知,甲的向心加速度与半径成反比,根据公式an=eq\f(v2,r),甲的线速度大小不变;而由图可知,乙的加速度与半径成正比,根据公式an=ω2r,说明乙的角速度不变.答案:不变变化变化不变5.如图所示皮带传动轮,大轮直径是小轮直径的3倍,A是大轮边缘上一点,B是小轮边缘上一点,C是大轮上一点,C到圆心O1的距离等于小轮半径,转动时皮带不打滑.则A.B.C三点的角速度之比ωA∶ωB∶ωC=______,向心加速度大小之比aA∶aB∶aC=______.解析:A与B的线速度大小相等,A与C的角速度相等.答案:1∶3∶13∶9∶1课堂小结课件展示本课小结:1.向心加速度的定义.物理意义;2.向心加速度的方向:指向圆心;3.向心加速度的大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 突发事件应急响应机制-洞察及研究
- Module 6 Unit2 Hobbies can make you grow as a person.教学设计- 2023-2024学年外研版八年级英语下册
- 压缩机控制电路故障诊断与检测教学设计中职专业课-电动汽车控制系统故障诊断与检修-新能源汽车运用与维修-交通运输大类
- 第5课 五味瓶(教学设计)-人教版(2012)美术二年级下册
- 数字出版物质量评价体系与用户画像算法的优化研究-洞察及研究
- 档案信息安全建设-洞察及研究
- 第16课 儿字底 系字底说课稿小学书法人美版五年级上册-人美版
- “山东师范大学2025年研究生入学考试(体育学)试题及答案”
- (水滴系列)七年级地理上册 序言 让我们一同走进地理说课稿2 (新版)商务星球版
- 2025征兵政治笔试题及答案
- 仁爱版九年级英语上册unit2topic1复习课市公开课一等奖省课获奖课件
- 北京市国内旅游合同书
- 公司品牌建设五年规划
- 第二单元 三国两晋南北朝的民族交融与隋唐统一多民族封建国家的发展 知识清单 高中历史统编版(2019)必修中外历史纲要上册
- 居室环境的清洁与消毒
- GB/T 39766-2021人类生物样本库管理规范
- GB/T 2900.50-2008电工术语发电、输电及配电通用术语
- GB/T 2518-2008连续热镀锌钢板及钢带
- GB/T 1689-2014硫化橡胶耐磨性能的测定(用阿克隆磨耗试验机)
- 第二讲国外教育评价的发展历程
- 中外管理思想史-课件
评论
0/150
提交评论