四川省泸州市合江天立学校高2023年高二数学第二学期期末调研试题含解析_第1页
四川省泸州市合江天立学校高2023年高二数学第二学期期末调研试题含解析_第2页
四川省泸州市合江天立学校高2023年高二数学第二学期期末调研试题含解析_第3页
四川省泸州市合江天立学校高2023年高二数学第二学期期末调研试题含解析_第4页
四川省泸州市合江天立学校高2023年高二数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,函数,若对任意给定的,总存在,使得,则的最小值为()A. B. C.5 D.62.在中,,则的形状为()A.正三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形3.把18个人平均分成两组,每组任意指定正副组长各1人,则甲被指定为正组长的概率为()A. B. C. D.4.用数字0,1,2,3,4组成没有重复数字且大于3000的四位数,这样的四位数有()A.250个 B.249个 C.48个 D.24个5.设函数是上的可导函数其导函数为,且有,则不等式的解集为()A. B. C. D.6.己知,是椭圆的左右两个焦点,若P是椭圆上一点且,则在中()A. B. C. D.17.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“⊥”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知函数满足对任意实数,都有,设,,()A.2018 B.2017 C.-2016 D.-20159.如图,某几何体的三视图如图所示(单位:),则该几何体的体积是()A. B. C. D.10.若关于x的不等式对任意的恒成立,则可以是()A., B.,C., D.,11.已知曲线C:y=,曲线C关于y轴的对称曲线C′的方程是()A.y=﹣ B.y=﹣ C.y= D.y=12.已知回归方程,则该方程在样本处的残差为()A.5 B.2 C.1 D.-1二、填空题:本题共4小题,每小题5分,共20分。13.已知两不共线的非零向量满足,,则向量与夹角的最大值是__________.14.已知复数,其中是虚数单位,复数满足,则复数的模等于__________.15.某城市街区如下图所示,其中实线表示马路,如果只能在马路上行走,则从点到点的最短路径的走法有___种.16.已知平行六面体中,,,,,,则的长为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的普通方程为,曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系.(Ⅰ)求直线的参数方程和极坐标方程;(Ⅱ)设直线与曲线相交于两点,求的值.18.(12分)已经函数.(1)讨论函数的单调区间;(2)若函数在处取得极值,对恒成立,求实数的取值范围.19.(12分)某中学一名数学老师对全班50名学生某次考试成绩分男女生进行统计,其中120分(含120分)以上为优秀,绘制了如图所示的两个频率分布直方图:(1)根据以上两个直方图完成下面的列联表:性别成绩优秀不优秀总计男生女生总计(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?2.0722.7063.8415.0246.6357.87910.8280.150.100.050.0250.0100.0050.001附:,其中.20.(12分)已知集合,.(1)求;(2)若集合,求的取值范围;21.(12分)(选修4-4.坐标系与参数方程)在直角坐标系中,曲线的参数方程是(为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)写出曲线的普通方程和直线的直角坐标方程;(2)设点,直线与曲线相交于两点,且,求实数的值.22.(10分)观察以下等式:13=1213+23=(1+2)213+23+33=(1+2+3)213+23+33+43=(1+2+3+4)2(1)请用含n的等式归纳猜想出一般性结论,并用数学归纳法加以证明.(2)设数列{an}的前n项和为Sn,且an=n3+n,求S1.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:先化简函数的解析式得,再解方程f(x)=0得到,再分析得到,再讨论a=0的情况得到w的范围,再综合即得w的最小值.详解:当a≠0时,,由f(x)=0得,因为所以,根据三角函数的图像得只要coswx=1满足条件即可,这时,所以当a=0时,,令f(x)=0,所以coswx=0,须满足综合得故答案为:D.点睛:(1)本题主要考查三角恒等变换,考查函数的零点和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力数形结合思想方法.(2)解答本题的难点在讨论a≠0时,分析推理出.2、B【解析】

利用二倍角公式代入cos2=求得cosB=,进而利用余弦定理化简整理求得a2+b2=c2,根据勾股定理判断出三角形为直角三角形.【详解】因为,,所以,有.整理得,故,的形状为直角三角形.故选:B.【点睛】余弦的二倍角公式有三个,要根据不同的化简需要进行选取..在判断三角形形状的方法中,一般有,利用正余弦定理边化角,角化边,寻找关系即可3、B【解析】

把18个人平均分成2组,再从每组里任意指定正、副组长各1人,即从9人中选一个正组长,甲被选定为正组长的概率,与组里每个人被选中的概率相等.【详解】由题意知,把18个人平均分成2组,再从每组里任意指定正、副组长各1人,即从9个人中选一个正组长,∴甲被选定为正组长的概率是.故选B.【点睛】本题考查了等可能事件的概率应用问题,是基础题目.4、C【解析】先考虑四位数的首位,当排数字4,3时,其它三个数位上课从剩余的4个数任选4个全排,得到的四位数都满足题设条件,因此依据分类计数原理可得满足题设条件的四位数共有个,应选答案C。5、C【解析】分析:先求,所以单调递减。再解不等式。详解:因为,所以,设故单调递减,那么,,所以的解集,也即是的解集,由单调递减,可得,所以,故选C。点睛:已知抽象函数的性质解不等式的基本解法有两种:(1)构造满足题目条件的特殊函数,(2)还原抽象函数,利用抽象函数的性质求解。6、A【解析】

根据椭圆方程求出、,即可求出、,再根据余弦定理计算可得;【详解】解:因为,所以,,又因为,,所以,在中,由余弦定理,即,,故选:【点睛】本题考查椭圆的简单几何性质及余弦定理解三角形,属于基础题.7、B【解析】当α⊥β时,平面α内的直线m不一定和平面β垂直,但当直线m垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m⊥β”的必要不充分条件.8、D【解析】

通过取特殊值,可得,进一步可得,然后经过计算可得,最后代值计算,可得结果.【详解】由题可知:令,可得令,则所以又由,所以又所以,由所以故选:D【点睛】本题考查抽象函数的应用,难点在于发现,,考验观察能力以及分析问题的能力,属中档题.9、C【解析】

根据三视图知几何体为上下底面为等腰直角三角形,高为的三棱台,计算体积得到答案.【详解】根据三视图知:几何体为上下底面为等腰直角三角形,高为的三棱台,故.故选:.【点睛】本题考查了三视图求体积,意在考查学生的计算能力和空间想象能力.10、D【解析】

分别取代入不等式,得到答案.【详解】不等式对任意的恒成立取得:取得:排除A,B,C故答案为D【点睛】本题考查了不等式恒成立问题,用特殊值法代入数据是解题的关键.11、A【解析】

设所求曲线上任意一点,由关于直线的对称的点在已知曲线上,然后代入已知曲线,即可求解.【详解】设所求曲线上任意一点,则关于直线的对称的点在已知曲线,所以,故选A.【点睛】本题主要考查了已知曲线关于直线的对称的曲线方程的求解,其步骤是:在所求曲线上任取一点,求得其关于直线的对称点,代入已知曲线求解是解答的关键,着重考查了推理与运算能力,属于中档试题.12、D【解析】分析:先求当x=3时,的值5,再用4-5=-1即得方程在样本处的残差.详解:当x=3时,,4-5=-1,所以方程在样本处的残差为-1.故答案为:D.点睛:(1)本题主要考查残差的计算,意在考查学生对该知识的掌握水平.(2)残差=实际值-预报值,不要减反了.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设向量夹角为,由余弦定理求得,再利用基本不等式求得取得最小值,即可求得的最大值,得到结果.【详解】因为两非零向量满足,,设向量夹角为,由于非零向量以及构成一个三角形,设,则由余弦定理可得,解得,当且仅当时,取得最小值,所以的最大值是,故答案是.【点睛】该题考查的是有关向量夹角的大小问题,在解题的过程中,涉及到的知识点有余弦定理,基本不等式,注意当什么情况下取得最值,再者就是需要明确角取最大值的时候其余弦值最小.14、【解析】

可设出复数z,通过复数相等建立方程组,从而求得复数的模.【详解】由题意可设,由于,所以,因此,解得,因此复数的模为:.【点睛】本题主要考查复数的四则运算,相等的条件,比较基础.15、7.【解析】分析:根据题意,从A到B的最短路程,只能向左、向下运动,将原问题转化为排列、组合问题,注意图中有空格,注意排除,计算可得答案.详解:根据题意,从A到B的最短路程,只能向左、向下运动;

从A到B,最短的路程需要向下走2次,向右走3次,即从5次中任取2次向下,剩下3次向右,有种情况,但图中有空格,故是方法数为中

故答案为:7.点睛:本题考查排列、组合的应用,解题的关键将圆问题转化为排列、组合问题,由分步计数原理计算得到答案.16、【解析】

可得,由数量积的运算可得,开方可得;【详解】如图所示:,故故的长等于.故答案为:【点睛】本题考查空间向量模的计算,选定为基底是解决问题的关键,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)直线的参数方程为(为参数)极坐标方程为()(Ⅱ)5【解析】

(Ⅰ)直线的普通方程为,可以确定直线过原点,且倾斜角为,这样可以直接写出参数方程和极坐标方程;(Ⅱ)利用,把曲线的参数方程化为普通方程,然后把直线的参数方程代入曲线的普通方程中,利用根与系数的关系和参数的意义,可以求出的值.【详解】解:(Ⅰ)直线的参数方程为(为参数)极坐标方程为()(Ⅱ)曲线的普通方程为将直线的参数方程代入曲线中,得,设点对应的参数分别是,则,【点睛】本题考查了直线的参数方程化为普通方程和极坐标方程问题,同时也考查了直线与圆的位置关系,以及直线参数方程的几何意义.18、(1)①当时,的递减区间是,无递增区间;②当时,的递增区间是,递减区间是.(2).【解析】

分析:(Ⅰ)求出导函数,由于定义域是,可按和分类讨论的正负,得单调区间.(Ⅱ)由函数在处取极值得且可得的具体数值,而不等式可转化为,这样只要求得的最小值即可.详解:(Ⅰ)在区间上,.①若,则,是区间上的减函数;②若,令得.在区间上,,函数是减函数;在区间上,,函数是增函数;综上所述,①当时,的递减区间是,无递增区间;②当时,的递增区间是,递减区间是.(II)因为函数在处取得极值,所以解得,经检验满足题意.由已知,则令,则易得在上递减,在上递增,所以,即.点睛:本题考查用导数求函数的单调区间、函数极值,用导数研究不等式恒成立问题.不等式恒成立通常通过分离参数法转化为求函数的最值.19、(1)见解析(2)有【解析】分析:(1)根据已知的数据完成2×2列联表.(2)先计算,再判断有多大把握认为学生的数学成绩与性别之间有关系.详解:(1)性别成绩优秀不优秀总计男生131023女生72027总计203050(2)由(1)中表格的数据知,,∵,∴有95%的把握认为学生的数学成绩与性别之间有关系.点睛:本题主要考查2×2列联表和独立性检验,意在考查学生对这些知识的掌握水平和分析推理计算能力.20、(1);(2)【解析】

(1)分别求解出集合和集合,根据交集的定义求得结果;(2)将问题转化为,由(1)可知,从而得到关于的不等式,解不等式求得结果.【详解】;(1)(2),即又时,或或即的取值范围为:【点睛】本题考查集合运算中的交集运算、求解集合中参数取值范围的问题;关键是能够准确求解出两个集合;易错点是忽略两个集合均为数集的特点,误认为两集合元素不一致,导致求解错误.21、(1),(2)或或.【解析】试题分析:(1)写普通方程,则只需消去参数和根据极坐标变换公式即可轻松求得故曲线的普通方程为.直线的直角坐标方程为.(2)由题可知,所以联立和得,代入韦达定理即得答案解析:(1),故曲线的普通方程为.直线的直角坐标方程为.(2)直线的参数方程可以写为(为参数).设两点对应的参数分别为,将直线的参数方程代入曲线的普通方程可以得到,所以或,解得或或.22、(1)猜想13+23+33+…+n3=(1+2+3+…+n)2;证明见解析(2)2【解析】

(1)根据式子猜想出一般性结论,然后当时,证明成立,假设时,式子也成立,然后对时的式子进行化简,从而证明结论成立;(2)对进行分组求和,然后根据(1)中所得到的求和公式,进行求和计算,得到答案.【详解】(1)猜想1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论