




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
东营市重点中学2021-2022学年中考数学模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为()A.50m B.25m C.(50﹣)m D.(50﹣25)m2.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.23.如图,右侧立体图形的俯视图是()A.B.C.D.4.如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40° B.36° C.50° D.45°5.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.6.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣367.若分式的值为零,则x的值是()A.1 B. C. D.28.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)29.的值是()A.1 B.﹣1 C.3 D.﹣310.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值()A.总不小于1B.总不小于11C.可为任何实数D.可能为负数二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系xOy中,点A、B为反比例函数(x>0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将(x>0)的图象绕原点O顺时针旋转90°,A点的对应点为A′,B点的对应点为B′.此时点B′的坐标是_____.12.如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为______.13.计算:2﹣1+=_____.14.如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为.15.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.16.分解因式:a2b+4ab+4b=______.三、解答题(共8题,共72分)17.(8分)已知,抛物线(为常数).(1)抛物线的顶点坐标为(,)(用含的代数式表示);(2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;(3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是.18.(8分)解分式方程:=119.(8分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?20.(8分)如图已知△ABC,点D是AB上一点,连接CD,请用尺规在边AC上求作点P,使得△PBC的面积与△DBC的面积相等(保留作图痕迹,不写做法)21.(8分)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E(Ⅰ)如图①,求∠CED的大小;(Ⅱ)如图②,当DE=BE时,求∠C的大小.22.(10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.23.(12分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.24.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.(1)在AB边上取点E,使AE=4,连接OA,OE;(2)在BC边上取点F,使BF=______,连接OF;(3)在CD边上取点G,使CG=______,连接OG;(4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB=MN=CM﹣CN,即可得到结论.【详解】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).则AB=MN=(50﹣)m.故选C.【点睛】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.2、D【解析】
根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.3、A【解析】试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图.4、B【解析】
由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【详解】∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故选B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.5、B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;
故选B.点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.6、B【解析】
解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=(k<0)的图象经过点B,∴﹣4=,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.7、A【解析】试题解析:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.8、C【解析】
按照“左加右减,上加下减”的规律,从而选出答案.【详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.9、B【解析】
直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,=﹣1.故选:B.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,10、A【解析】
利用配方法,根据非负数的性质即可解决问题;【详解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,
又∵(x+3)2≥0,(2y-1)2≥0,
∴x2+4y2+6x-4y+11≥1,
故选:A.【点睛】本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.二、填空题(本大题共6个小题,每小题3分,共18分)11、(1,-4)【解析】
利用旋转的性质即可解决问题.【详解】如图,由题意A(1,4),B(4,1),A根据旋转的性质可知′(4,-1),B′(1,-4);
所以,B′(1,-4);故答案为(1,-4).【点睛】本题考查反比例函数的旋转变换,解题的关键是灵活运用所学知识解决问题.12、1.5或3【解析】根据矩形的性质,利用勾股定理求得AC==5,由题意,可分△EFC是直角三角形的两种情况:如图1,当∠EFC=90°时,由∠AFE=∠B=90°,∠EFC=90°,可知点F在对角线AC上,且AE是∠BAC的平分线,所以可得BE=EF,然后再根据相似三角形的判定与性质,可知△ABC∽△EFC,即,代入数据可得,解得BE=1.5;如图2,当∠FEC=90°,可知四边形ABEF是正方形,从而求出BE=AB=3.故答案为1.5或3.点睛:此题主要考查了翻折变换的性质,勾股定理,矩形的性质,正方形的判定与性质,利用勾股定理列方程求解是常用的方法,本题难点在于分类讨论,做出图形更形象直观.13、【解析】根据负整指数幂的性质和二次根式的性质,可知=.故答案为.14、.【解析】试题分析:设正方形的边长为y,EC=x,由题意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化简得y=4x,∴sin∠EAB=.考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义15、【解析】试题分析:,解得r=.考点:弧长的计算.16、b(a+2)2【解析】
根据公式法和提公因式法综合运算即可【详解】a2b+4ab+4b=.故本题正确答案为.【点睛】本题主要考查因式分解.三、解答题(共8题,共72分)17、(1);(2)图象见解析,或;(3)【解析】
(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;(3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求.【详解】解:(1),抛物线的顶点的坐标为.故答案为:(2)将代入抛物线的解析式得:解得:,抛物线的解析式为.抛物线的大致图象如图所示:将代入得:,解得:或抛物线与反比例函数图象的交点坐标为或.将代入得:,.将代入得:,.综上所述,反比例函数的表达式为或.(3)设点的坐标为,则点的坐标为,的坐标为.的长随的增大而减小.矩形在其对称轴的左侧,抛物线的对称轴为,当时,的长有最小值,的最小值.的长度不变,当最小时,有最小值.的最小值故答案为:.【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.18、x=1【解析】
分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】化为整式方程得:2﹣3x=x﹣2,解得:x=1,经检验x=1是原方程的解,所以原方程的解是x=1.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19、(1)200元和100元(2)至少6件【解析】
(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.【详解】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得,解得:,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.20、见解析【解析】
三角形的面积相等即同底等高,所以以BC为两个三角形的公共底边,在AC边上寻找到与D到BC距离相等的点即可.【详解】作∠CDP=∠BCD,PD与AC的交点即P.【点睛】本题考查了三角形面积的灵活计算,还可以利用三角形的全等来进行解题.21、(Ⅰ)68°(Ⅱ)56°【解析】
(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等,求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.【详解】(Ⅰ)∵四边形ABED圆内接四边形,∴∠A+∠DEB=180°,∵∠CED+∠DEB=180°,∴∠CED=∠A,∵∠A=68°,∴∠CED=68°.(Ⅱ)连接AE.∵DE=BD,∴,∴∠DAE=∠EAB=∠CAB=34°,∵AB是直径,∴∠AEB=90°,∴∠AEC=90°,∴∠C=90°﹣∠DAE=90°﹣34°=56°【点睛】本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题.22、(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣.【解析】
(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF=,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=,∴DO=2,则FO=,故图中阴影部分的面积为:.【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.23、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.【解析】
(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 音乐专业听力试题及答案
- 黑吉辽蒙金太阳2026届高三9月开学联考(26-1002C)地理试题及答案
- 安徽省九师联盟2026届高三9月开学联考政治(含答案)
- 《烹饪原料初加工工艺》项目一刀工与原料成形
- 钻石专业试题及答案大全
- 路面施工方案反光衣
- 库房物资搬运施工方案
- 地产开发合作协议示例
- 楼顶油漆施工方案
- DB32-T 4451.10-2023 医用影像设备临床使用管理与质量控制规范 第10部分:超声成像设备
- 九年级化学人教版基于特定需求设计和制作简易供氧器(教学设计)
- SCAMPER创新思维模型
- 乡镇庆中秋迎国庆活动方案
- 山东科学技术出版社小学一年级上册综合实践活动教案
- 2024口腔医学专业考核标准
- 大型群众性活动安全许可申请表
- 小学数学人教版-六年级上-第一单元-分数乘法-教材分析
- 百融云创风险决策引擎V5产品操作手册
- DZ∕T 0033-2020 固体矿产地质勘查报告编写规范(正式版)
- 思念混声合唱简谱
- 家庭健康指导员培训方案及流程
评论
0/150
提交评论