第11讲图形思想课-图形的相似-2022年八升九数学核心考点精讲精练(苏科版)(解析版)_第1页
第11讲图形思想课-图形的相似-2022年八升九数学核心考点精讲精练(苏科版)(解析版)_第2页
第11讲图形思想课-图形的相似-2022年八升九数学核心考点精讲精练(苏科版)(解析版)_第3页
第11讲图形思想课-图形的相似-2022年八升九数学核心考点精讲精练(苏科版)(解析版)_第4页
第11讲图形思想课-图形的相似-2022年八升九数学核心考点精讲精练(苏科版)(解析版)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

图形思想课--图形的相似知识梳理(一)比例的性质1.比例中项;2.合分比性质;3.等比性质(二)平行线分线段成比例定理1.两条直线被一组平行线所截,所得的线段成比例。2.如右图所示,所得的对应线段成比例的有:EQ\F(AB,BC)=eq\f(DE,EF),EQ\F(AB,AC)=\F(DE,DF),\F(AB,DE)=\F(AC,DF),等等。3.所得的线段必须是对应的,否则不成比例。4.平行线段分线段成比例定理的常见变形如下图所示: (三)平行线分线段成比例定理的推论平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。1.一定要注意三边的对应的关系,不要写错2.平行于三角形的一边的直线可以与三角形的两边相交,也可以与三角形的两边的延长线相交,如下图所示,若DE∥BC,则有EQ\F(AD,AB)=\F(AE,AC),\F(AD,DB)=\F(AE,EC),\F(DB,AB)=\F(EC,AC)(四)相似三角的判定方法1、如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.2、如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.3、如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(五)相似三角形基本类型1、平行线型:常见的有如下两种,DE∥BC,则△ADE∽△ABC2、相交线型:常见的有如下四种情形(1)如图,已知∠1=∠B,则由公共角∠A得,△ADE∽△ABC(2)如下左图,已知∠1=∠B,则由公共角∠A得,△ADC∽△ACB(3)如下右图,已知∠B=∠D,则由对顶角∠1=∠2得,△ADE∽△ABC3、旋转型:已知∠BAD=∠CAE,∠B=∠D,则△ADE∽△ABC,下图为常见的基本图形.4、母子型:已知∠ACB=90°,AB⊥CD,则△CBD∽△ABC∽△ACD.5、斜交型:如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。(有“反A共角型”、“反A共角共边型”、“蝶型”)6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(六)黄金分割(七)相似三角形的性质1、相似三角形对应角相等,对应边成比例.2、相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.3、相似三角形周长的比等于相似比.4、相似三角形面积的比等于相似比的平方.(八)利用三角形相似测量高度方法1、利用阳光下的影子测量物高根据太阳光线是平行的,寻找相似三角形.在同一时刻,EQ\F(被测量物体的实际高度,被测量物体的影长)=\F(某物体的实际高度,某物体的影长)2、利用标杆测量物高3、利用镜子原理测量物高(九)图形的位似1、位似图形的定义2、图形位似的性质01.成比例线段与平行线分线段成比例01.成比例线段与平行线分线段成比例例题精讲 例题精讲例1、已知,(1)求的值;(2)如果,求x的值.【解析】(1)∵==,∴令===k,则x=2k,y=3k,z=4k,∴===﹣1;(2)∵x=2k,y=3k,z=4k,=y﹣z,∴x+3=(y﹣z)2,即2k+3=(3k﹣4k)2,解得k=﹣1或k=3(舍去),∴x=﹣2.例2、如图,AC∥BD,AD、BC相交于E,EF∥BD,求证:+=.【解析】∵AC∥BD,EF∥BD,∴,,∴==1,∴+=.02.三角形相似的条件02.三角形相似的条件例题精讲 例题精讲例1、如图,在正方形ABCD中,E是AD的中点,F是CD上一点,且CF=3FD.则图中相似三角形的对数是()A.1 B.2 C.3 D.4【解析】有三对相似三角形,Rt△ABE∽Rt△DEF,Rt△ABE∽Rt△EBF,Rt△EBF∽Rt△DEF.理由如下:设正方形的边长为4a,则AE=DE=2a,DF=a,CF=3a,在Rt△BCF中,BF==5a,在Rt△ABE中,BE==2a,在Rt△DEF中,EF==a,∵BE2+EF2=BF2,∴△BEF为直角三角形,∠BEF=90°,∵==2,==2,∴=,∴Rt△ABE∽Rt△DEF,同理得=,∴Rt△ABE∽Rt△EBF,∴Rt△EBF∽Rt△DEF.故选:C.例2、在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0≤t≤6),那么当t为何值时,△APQ与△ABD相似?说明理由.【解析】设AP=2tcm,DQ=tcm,∵AB=12cm,AD=6cm,∴AQ=(6﹣t)cm,∵∠A=∠A,∴①当=时,△APQ∽△ABD,∴=,解得:t=3;②当=时,△APQ∽△ADB,∴=,解得:t=1.2.∴当t=3或1.2时,△APQ与△ABD相似.03.利用三角形相似测高距03.利用三角形相似测高距例题精讲 例题精讲例1、如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25m B.4.25m C.4.45m D.4.75m【解析】如图,设BD是BC在地面的影子,树高为x,根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,∴BD=0.96,∴树在地面的实际影子长是0.96+2.6=3.56,再竹竿的高与其影子的比值和树高与其影子的比值相同得,∴x=4.45,∴树高是4.45m.故选C.例2、如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.【解析】∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=52m,FH=4m,∴=,=,∴=,解得BD=52,∴=,解得AB=54.答:建筑物的高为54米.04.相似三角形的性质及位似04.相似三角形的性质及位似例题精讲 例题精讲例1、一块材料的形状是锐角三角形ABC,边BC=12cm,高AD=8cm,把它加工成矩形零件如图,要使矩形的一边在BC上,其余两个顶点分别在AB,AC上.且矩形的长与宽的比为3:2,求这个矩形零件的边长.【解析】如图所示∵四边形PQMN是矩形,∴BC∥PQ,∴△APQ∽△ABC,∴,由于矩形长与宽的比为3:2,∴分两种情况:①若PQ为长,PN为宽,设PQ=3k,PN=2k,则,解得:k=2,∴PQ=6cm,PN=4cm;②PN为6,PQ为宽,设PN=3k,PQ=2k,则,解得:k=,∴PN=cm,PQ=cm;综上所述:矩形的长为6cm,宽为4cm;或长为cm,宽为cm.例2、△ABC经过一定的运动得到△A1B1C1,然后以点A1为位似中心按比例尺A1B2:A1B1=2:1,△A1B1C1放大为△A1B2C2,如果△ABC上的点P的坐标为(a,b),那么这个点在△A1B2C2中的对应点P2的坐标为()A.(a+3,b+2) B.(a+2,b+3) C.(2a+6,2b+4) D.(2a+4,2b+6)【解析】△A1B1C1是由△ABC通过平移得到的,其平移规律是右移三个单位后,再上移2个单位,所以点P移到P1的坐标为(a+3,b+2).△A1B2C2是由三角线A1B1C1通过位似变换得到的,所以在△A1B2C2上的各点坐标,都做了相应的位似变换,即乘以了2.∴点P1的对应点P2的坐标为(2a+6,2b+4).故选C.举一反三 举一反三1、已知,则的值是()A. B. C. D.【解析】D.2、如图,△ABC中,AB=AC,D为BC中点,在BA的延长线上取一点E,使得ED=EC,ED与AC交于点F,则的值为()A. B. C. D.【解析】过点D作DG∥AC,交EB于点G,连接AD,如图所示:∵D为BC中点,DG∥AC,∴G为AB的中点,∠EAC=∠DGE,∴DG是△ABC的中位线,∴AC=2DG,∵AB=AC,ED=EC,∴∠B=∠ACB,∠EDC=∠ECD,∵∠EDC=∠B+∠DEG,∠ECD=∠ACB+∠ACE,∴∠ACE=∠EDG,在△ACE和△GED中,,∴△ACE≌△GED(AAS),∴AE=DG,∵AB=AC,D为BC中点,∴AD⊥BC,∴∠ADB=90°,∴DG=AB=AG=BG,∴AE=AG,∵DG∥AC,∴AF:DG=AE:GE=1:2,即DG=2AF,∴AC=4AF,∴=;故选:B.3、如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有()A.1个 B.2个 C.3个 D.4个【解析】设AP=x,则有PB=AB﹣AP=7﹣x,当△PDA∽△CPB时,=,即=,解得:x=1或x=6,当△PDA∽△PCB时,=,即=,解得:x=,则这样的点P共有3个,故选C.4、如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:25【解析】B.5、已知,如图所示的一张三角形纸片ABC,边AB的长为20cm,AB边上的高为25cm,在三角形纸片ABC中从下往上依次裁剪去宽为4cm的矩形纸条,若剪得的其中一张纸条是正方形,那么这张正方形纸条是()A.第4张 B.第5张 C.第6张 D.第7张【解析】正方形中平行于底边的边是4,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则=,解得x=5,所以另一段长为25﹣5=20,因为20÷4=5,所以是第5张.故选:B.6、如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A. B. C. D.【解析】如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CFB=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7∴AB==5,∵l2∥l3,∴=∴DG=CE=,∴BD=BG﹣DG=7﹣=,∴=.故选A.7、如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.【解析】(1)∠B=∠C=45°.∠EDC=∠BAD.∴△ABD∽△DCE.(2)讨论:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意.②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=2,BC=2,AE=AC﹣EC=2﹣BD=2﹣(2﹣2)=4﹣2③若AE=DE,此时∠DAE=∠ADE=45°,如下图所示易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=1.8、如图,为了测量路灯S的高度,把一根1.5m长的竹竿AB竖立在地面上,测得竹竿的影长BC为1m,然后拿着竹竿沿DB方向远离路灯方向走了4米到B′,再把竹竿竖立在地面上(即A′B′),测得竹竿的影长为1.8m,求路灯的高度.【解析】∵AB⊥DC′,DS⊥DC′,∴SD∥AB,∴△ABC∽△SDC,∴=,即=,解得DB=h﹣1①,同理,∵A′B′⊥DC′,∴△A′B′C′∽△SDC′,∴=,=②,把①代入②得,=,解得:h=9.答:路灯离地面的高度是9米.课后巩固 课后巩固1、如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2) B.(3,1) C.(2,2) D.(4,2)【解析】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选:A.2、如图,AC∥BD,AD与BC交于点E,过点E作EF∥BD,交线段AB于点F,则下列各式错误的是()A.= B.= C.+=1 D.=【解析】D.3、为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如图,如果大视力表中“E”的高度是3.5cm,那么小视力表中相应“E”的高度是()A.3cm B.2.5cm C.2.3cm D.2.1cm【解析】D.4、如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.= B.= C.= D.=【解析】C.5、2015年6月27日,四川共青图雨城区委在中里镇文化馆举办了第二期青年剪纸培训,参加培训的小王想把一块Rt△ABC废纸片剪去一块矩形BDEF纸片,如图所示,若∠C=30°,AB=10cm,则该矩形BDEF的面积最大为()A.4cm3 B.5cm3 C.10cm3 D.25cm3【解析】∵Rt△ABC中,∠C=30°,AB=10cm,∴BC==10cm.∵EF∥BC,∴∠AEF=∠C=30°,设EF=x,则AF=x,∴BF=10﹣x,∴S矩形BDEF=BD•BF=x•(10﹣x)=﹣x2+10x(0<x<10),∴当x=﹣=5时,S最大==25cm2.故选D.6、兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为l米的竹竿的影长为0.5米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A.9.5米 B.10.75米 C.11.8米 D.9.8米【解析】根据题意可构造相似三角形模型如图:延长FE交AB于G,则Rt△ABC∽Rt△AGF,∴AG:GF=AB:BC=物高:影长=1:0.5∴GF=0.5AG又∵GF=GE+EF,BD=GE∴GF=4.6∴AG=9.2∴AB=AG+GB=9.5,即树高为9.5米.故选A.7、如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?【解析】设经过t秒时,以△QBC与△ABC相似,则AP=2t,BP=8﹣2t,BQ=4t,∵∠PBQ=∠ABC,∴当=时,△BPQ∽△BAC,即=,解得t=2(s);当=时,△BPQ∽△BCA,即=,解得t=0.8(s);即经过2秒或0.8秒时,△QBC与△ABC相似.8、如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.【解析】在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m,即树高5.5m.直击中考 直击中考1、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A. B. C. D.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论