版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=18,则△ABD的面积是()A.18 B.36 C.54 D.722.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是(
).A. B. C. D.3.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A. B. C. D.4.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.5.下列因式分解正确的是()A.x2+9=(x+3)2 B.a2+2a+4=(a+2)2C.a3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)6.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm7.如图,在边长为3的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.33 B.32 C.8.已知反比例函数y=-2A.图象必经过点(﹣1,2) B.y随x的增大而增大C.图象在第二、四象限内 D.若x>1,则0>y>-29.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A. B. C. D.10.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17二、填空题(共7小题,每小题3分,满分21分)11.把多项式3x2-12因式分解的结果是_____________.12.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.13.将多项式因式分解的结果是.14.阅读理解:引入新数,新数满足分配律,结合律,交换律.已知,那么________.15.已知双曲线经过点(-1,2),那么k的值等于_______.16.如图,直线经过、两点,则不等式的解集为_______.17.2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a>10),则应付票价总额为_____元.(用含a的式子表示)三、解答题(共7小题,满分69分)18.(10分)解方程组19.(5分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)20.(8分)已知:如图,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.(拓展)当与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.21.(10分)已知关于x的方程x2-(m+2)x+(2m-1)=0。求证:方程恒有两个不相等的实数根;若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。22.(10分)某商场同时购进甲、乙两种商品共200件,其进价和售价如表,商品名称甲乙进价(元/件)80100售价(元/件)160240设其中甲种商品购进x件,该商场售完这200件商品的总利润为y元.(1)求y与x的函数关系式;(2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.23.(12分)车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择A通道通过的概率是;求两辆车经过此收费站时,选择不同通道通过的概率.24.(14分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
根据题意可知AP为∠CAB的平分线,由角平分线的性质得出CD=DH,再由三角形的面积公式可得出结论.【详解】由题意可知AP为∠CAB的平分线,过点D作DH⊥AB于点H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB•DH=×18×1=36故选B.【点睛】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.2、D【解析】
根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正确;D错误;故选D.【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.3、D【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.【详解】∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故选D.【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.4、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.5、C【解析】
试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)故选C,考点:因式分解【详解】请在此输入详解!6、C【解析】
首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【详解】∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD==24(cm).故选C.【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.7、D【解析】试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC=3考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.8、B【解析】试题分析:根据反比例函数y=kx试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;C、命题正确;D、命题正确.故选B.考点:反比例函数的性质9、B【解析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF=,再证明∠BFC=90°,最后利用勾股定理求得CF=.【详解】连接BF,由折叠可知AE垂直平分BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选B.【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.10、D【解析】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.故选项D正确.考点:三角形三边关系;分情况讨论的数学思想二、填空题(共7小题,每小题3分,满分21分)11、3(x+2)(x-2)【解析】
因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x2-12因式分解先提公因式3,再利用平方差公式因式分解.【详解】3x2-12=3()=3.12、3:2【解析】因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为:3:2.13、m(m+n)(m﹣n).【解析】试题分析:原式==m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n).考点:提公因式法与公式法的综合运用.14、2【解析】
根据定义即可求出答案.【详解】由题意可知:原式=1-i2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.15、-1【解析】
分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.16、-1<X<2【解析】经过点A,∴不等式x>kx+b>-2的解集为.17、24a【解析】
根据题意列出代数式即可.【详解】根据题意得:30a×0.8=24a,
则应付票价总额为24a元,
故答案为24a.【点睛】考查了列代数式,弄清题意是解本题的关键.三、解答题(共7小题,满分69分)18、【解析】解:由①得③把③代入②得把代人③得∴原方程组的解为19、(20-5)千米.【解析】分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.详解:过点B作BD⊥AC,依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,设AD=x,∴tan∠ABD=即tan30°=,∴BD=x,在Rt△DCB中,∴tan∠CBD=即tan53°=,∴CD=∵CD+AD=AC,∴x+=13,解得,x=∴BD=12-,在Rt△BDC中,∴cos∠CBD=tan60°=,即:BC=(千米),故B、C两地的距离为(20-5)千米.点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.20、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析.【解析】
发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论.【详解】[发现](3)∵P(2,0),∴OP=2.∵OA=3,∴AP=3,∴的长度为.故答案为;(2)设⊙P半径为r,则有r=2﹣3=3,当t=2时,如图3,点N与点A重合,∴PA=r=3,设MP与AB相交于点Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQPA,∴AQ=AP×cos30°,∴S重叠部分=S△APQPQ×AQ.即重叠部分的面积为.[探究]①如图2,当⊙P与直线AB相切于点C时,连接PC,则有PC⊥AB,PC=r=3.∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;∴点P的坐标为(3,0);②如图3,当⊙P与直线OB相切于点D时,连接PD,则有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPD,∴OP,∴点P的坐标为(,0);③如图2,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP;∴点P的坐标为(,0);[拓展]t的取值范围是2<t≤3,2≤t<4,理由:如图4,当点N运动到与点A重合时,与Rt△ABO的边有一个公共点,此时t=2;当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=3,∴t3,与Rt△ABO的边有两个公共点,∴2<t≤3.如图6,当⊙P运动到PM与OB重合时,与Rt△ABO的边有两个公共点,此时t=2;直到⊙P运动到点N与点O重合时,与Rt△ABO的边有一个公共点,此时t=4;∴2≤t<4,即:t的取值范围是2<t≤3,2≤t<4.【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.21、(1)见详解;(2)4+或4+.【解析】
(1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论.(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.【详解】解:(1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在实数范围内,m无论取何值,(m-2)2+4≥4>0,即△>0.∴关于x的方程x2-(m+2)x+(2m-1)=0恒有两个不相等的实数根.(2)∵此方程的一个根是1,∴12-1×(m+2)+(2m-1)=0,解得,m=2,则方程的另一根为:m+2-1=2+1=3.①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为1+3+=4+.②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为1+3+=4+.22、(1)y=﹣60x+28000;(2)若售完这些商品,则商场可获得的最大利润是22000元;(3)商场应购进甲商品120件,乙商品80件,获利最大【解析】分析:(1)根据总利润=(甲的售价-甲的进价)×购进甲的数量+(乙的售价-乙的进价)×购进乙的数量代入列关系式,并化简即可;(2)根据总成本≤18000列不等式即可求出x的取值,再根据函数的增减性确定其最值问题;(3)把50<a<70分三种情况讨论:一次项x的系数大于0、等于0、小于0,根据函数的增减性得出结论.详解:(1)根据题意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,则y与x的函数关系式为:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要购进100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y随x的增大而减小,∴当x=100时,y有最大值,y大=﹣60×100+28000=22000,∴若售完这些商品,则商场可获得的最大利润是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①当50<a<60时,a﹣60<0,y随x的增大而减小,∴当x=100时,y有最大利润,即商场应购进甲商品100件,乙商品100件,获利最大,②当a=60时,a﹣60=0,y=28000,即商场应购进甲商品的数量满足100≤x≤120的整数件时,获利最大,③当60<a<70时,a﹣60>0,y随x的增大而增大,∴当x=120时,y有最大利润,即商场应购进甲商品120件,乙商品80件,获利最大.点睛:本题是一次函数和一元一次不等式的综合应用,属于销售利润问题,在此类题中,要明确售价、进价、利润的关系式:单件利润=售价-进价,总利润=单个利润×数量;认真读题,弄清题中的每一个条件;对于最值问题,可利用一次函数的增减性来解决:形如y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.23、(1);(2).【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.试题解析:(1)选择A通道通过的概率=,故答案为;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湖南商务职业技术学院高职单招职业适应性测试模拟试题有答案解析
- 2026年桂林电子科技大学单招职业技能笔试模拟试题带答案解析
- 儿科护理要点与护理创新实践
- 2026年广西科技师范学院高职单招职业适应性测试备考试题有答案解析
- 财经学习课件
- 2026年广东南华工商职业学院高职单招职业适应性测试备考试题有答案解析
- 新冠疫苗研发历程
- 2026年大连装备制造职业技术学院单招综合素质考试参考题库带答案解析
- 移动医疗平台在慢性病管理中的应用
- 人才培养与引进计划
- 山东省潍坊市2023-2024学年高一上学期1月期末考试英语试题 含解析
- 农村个人土地承包合同模板
- 外聘合同模板
- 2023年安徽宣城中学高一自主招生物理试卷试题(含答案详解)
- 活着,余华,下载
- 中医养生的吃野山参粉养生法
- 中国痤疮治疗指南
- 居民自建桩安装告知书回执
- 国家开放大学最新《监督学》形考任务(1-4)试题解析和答案
- GB/T 25085.3-2020道路车辆汽车电缆第3部分:交流30 V或直流60 V单芯铜导体电缆的尺寸和要求
- GB/T 242-2007金属管扩口试验方法
评论
0/150
提交评论