




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市增城区四校联考2024年数学高二上期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若执行如图所示的程序框图,则输出S的值是()A.18 B.78C.6 D.502.有6本不同的书,按下列方式进行分配,其中分配种数正确的是()A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;3.某校初一有500名学生,为了培养学生良好的阅读习惯,学校要求他们从四大名著中选一本阅读,其中有200人选《三国演义》,125人选《水浒传》,125人选《西游记》,50人选《红楼梦》,若采用分层抽样的方法随机抽取40名学生分享他们的读后感,则选《西游记》的学生抽取的人数为()A.5 B.10C.12 D.154.已知点是椭圆方程上的动点,、是直线上的两个动点,且满足,则()A.存在实数使为等腰直角三角形的点仅有一个B.存在实数使为等腰直角三角形的点仅有两个C.存在实数使为等腰直角三角形的点仅有三个D.存在实数使为等腰直角三角形的点有无数个5.已知定义在上的函数满足:,且,则的解集为()A. B.C. D.6.以轴为对称轴,顶点为坐标原点,焦点到准线的距离为4的抛物线方程是()A. B.C.或 D.或7.已知命题是真命题,那么的取值范围是()A. B.C. D.8.直线与直线交于点Q,m是实数,O为坐标原点,则的最大值是()A.2 B.C. D.49.设变量,满足约束条件则的最小值为()A.3 B.-3C.2 D.-210.若抛物线的准线方程是,则抛物线的标准方程是()A. B.C. D.11.甲组数据为:5,12,16,21,25,37,乙组数据为:1,6,14,18,38,39,则甲、乙的平均数、极差及中位数相同的是()A.极差 B.平均数C.中位数 D.都不相同12.已知,是双曲线C:(,)的两个焦点,过点与x轴垂直的直线与双曲线C交于A、B两点,若是等腰直角三角形,则双曲线C的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线()上的一点到其焦点F的距离______.14.若,,三点共线,则m的值为___________.15.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是______.16.已知数列的前n项和为,且满足通项公式,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点到两个定点的距离比为(1)求点的轨迹方程;(2)若过点的直线被点的轨迹截得的弦长为,求直线的方程18.(12分)已知三条直线:,:,:(是常数),.(1)若,,相交于一点,求的值;(2)若,,不能围成一个三角形,求的值:(3)若,,能围成一个直角三角形,求的值.19.(12分)已知数列的前n项和为,且满足(1)证明数列是等比数列;(2)若数列满足,证明数列的前n项和20.(12分)在等差数列中,已知公差,且成等比数列(1)求数列的通项公式;(2)记,求数列的前项和21.(12分)已知各项均为正数的等差数列中,,且,,构成等比数列的前三项(1)求数列,的通项公式;(2)求数列的前项和22.(10分)已知椭圆C与椭圆有相同的焦点,且长轴长为4(1)求C的标准方程;(2)直线,分别经过点与C相切,切点分别为A,B,证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】根据框图逐项计算后可得正确的选项.【题目详解】第一次循环前,;第二次循环前,;第三次循环前,;第四次循环前,;第五次循环前,此时满足条件,循环结束,输出S的值是18故选:A2、D【解题分析】根据题意,分别按照选项说法列式计算验证即可做出判断.【题目详解】选项A,6本不同的书分给甲、乙、丙三人,每人各2本,有种分配方法,故该选项错误;选项B,6本不同的书分给甲、乙、丙三人,一人4本,另两人各1本,先将6本书分成4-1-1的3组,再将三组分给甲乙丙三人,有种分配方法,故该选项错误;选项C,6本不同的书分给甲乙每人各2本,有种方法,其余分给丙丁每人各1本,有种方法,所以不同的分配方法有种,故该选项错误;选项D,先将6本书分为2-2-1-14组,再将4组分给甲乙丙丁4人,有种方法,故该选项正确.故选:D.3、B【解题分析】根据分层抽样的方法,列出方程,即可求解.【题目详解】根据分层抽样的方法,可得选《西游记》的学生抽取的人数为故选:B.4、B【解题分析】求出点到直线的距离的取值范围,对点是否为直角顶点进行分类讨论,确定、的等量关系,综合可得出结论.【题目详解】设点,则点到直线的距离为.因为椭圆与直线均关于原点对称,①若为直角顶点,则.当时,此时,不可能是等腰直角三角形;当时,此时,满足是等腰直角三角形的直角顶点有两个;当时,此时,满足是等腰直角三角形的直角顶点有四个;②若不是直角顶点,则.当时,满足是等腰直角三角形的非直角顶点不存在;当时,满足是等腰直角三角形的非直角顶点有两个;当时,满足是等腰直角三角形非直角顶点有四个.综上所述,当时,满足是等腰直角三角形的点有八个;当时,满足是等腰直角三角形的点有六个;当时,满足是等腰直角三角形的点有四个;当时,满足是等腰直角三角形的点有两个;当时,满足是等腰直角三角形的点不存在.故选:B.5、A【解题分析】令,利用导数可判断其单调性,从而可解不等式.【题目详解】设,则,故为上的增函数,而可化为即,故即,所以不等式的解集为,故选:A.6、C【解题分析】根据抛物线的概念以及几何性质即可求抛物线的标准方程.【题目详解】依题意设抛物线方程为因为焦点到准线的距离为4,所以,所以,所以抛物线方程或故选:C7、C【解题分析】依据题意列出关于的不等式,即可求得的取值范围.【题目详解】当时,仅当时成立,不符合题意;当时,若成立,则,解之得综上,取值范围是故选:C8、B【解题分析】求出两直线的交点坐标,结合两点间的距离公式得到,进而可以求出结果.【题目详解】因为与的交点坐标为所以,当时,,所以的最大值是,故选:B.9、D【解题分析】转化为,则最小即直线在轴上的截距最大,作出不等式组表示的可行域,数形结合即得解【题目详解】转化为,则最小即直线在轴上的截距最大作出不等式组表示的可行域如图中阴影部分所示,作出直线,平移该直线,当直线经过时,在轴上的截距最大,最小,此时,故选:D10、D【解题分析】根据抛物线的准线方程,可直接得出抛物线的焦点,进而利用待定系数法求得抛物线的标准方程【题目详解】准线方程为,则说明抛物线的焦点在轴的正半轴则其标准方程可设为:则准线方程为:解得:则抛物线的标准方程为:故选:D11、B【解题分析】由平均数、极差及中位数的定义依次求解即可比较【题目详解】,,故甲、乙的平均数相同,甲、乙的极差分别为,,故不同,甲、乙的中位数分别为,,故不同,故选:12、B【解题分析】根据等腰直角三角形的性质,结合双曲线的离心率公式进行求解即可.【题目详解】由题意不妨设,,当时,由,不妨设,因为是等腰直角三角形,所以有,或舍去,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】将点坐标代入方程中可求得抛物线的方程,从而可得到焦点坐标,进而可求出【题目详解】解:为抛物线上一点,即有,,抛物线的方程为,焦点为,即有.故答案为:5.14、【解题分析】根据三点共线与斜率的关系即可得出【题目详解】由,,三点共线,可知所在的直线与所在的直线平行,又,由已知可得,解得故答案为:15、【解题分析】化简椭圆的方程为标准形式,列出不等式,即可求解.【题目详解】由题意,方程可化为,因为方程表示焦点在轴上的椭圆,可得,解得,实数的取值范围是.故答案为:.16、【解题分析】由时,,可得,利用累乘法得,从而即可求解.【题目详解】因为,所以时,,即,化简得,又,所以,检验时也成立,所以,所以,故答案:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解题分析】(1)设出,表达出,直接法求出轨迹方程;(2)在第一问的基础上,先考虑直线斜率不存在时是否符合要求,再考虑斜率存在时,设出直线方程,表达出圆心到直线的距离,利用垂径定理列出方程,求出直线方程.【小问1详解】设,则,,故,两边平方得:【小问2详解】当直线斜率不存在时,直线为,此时弦长为,满足题意;当直线斜率存在时,设直线,则圆心到直线距离为,由垂径定理得:,解得:,此时直线的方程为,综上:直线的方程为或.18、(1)(2)或或(3)或【解题分析】(1)由二条已知直线求交点,代入第三条直线即可;(2)不能围成一个三角形,过二条已知直线的交点,或者与它们平行;(3)由直线互相垂直得,斜率之积为-1.【小问1详解】显然,相交,由得交点,由点代入得所以当,,相交时,.【小问2详解】过定点,因为,,不能围成三角形,所以,或与平行,或与平行,所以,或,或.【小问3详解】显然与不垂直,所以,且或所以的值为或19、(1)证明见解析(2)证明见解析【解题分析】(1)可根据已知的与的递推关系,利用求解出数列的首项,然后当时,递推做差,利用消掉,即可得到与之间的关系,从而完成证明;(2)利用第(1)问求解出的数列的通项公式,带入到中,再使用错位相减法进行求和,根据最后计算的结果与比较即可完成证明.【小问1详解】由题意得,当时,,∴,当时,,∴,∵,∴,于是有,故数列是以3为首项,3为公比的等比数列.得证.【小问2详解】由(1)可知,∴,,①,②,②−①得:,∴,∵,故,∴得证.20、(1)an=n(2)【解题分析】(1)由已知条件可得(d+2)2=2d+7,从而可求出公差,进而可求得数列的通项公式,(2)由(1)得,然后利用错位相减法求【小问1详解】因a1,a2+1,a3+6成等比数列,所以又a1=1,所以(d+2)2=2d+7,所以d=1或d=(舍),所以an=n;【小问2详解】因为,所以,所以,所以所以21、(1);(2)【解题分析】(1)设等差数列公差为d,利用基本量代换列方程组求出的通项公式,进而求出的首项和公比,即可求出的通项公式;(2)利用分组求和法直接求和.【小问1详解】设等差数列的公差为d,则由已知得:,即,又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医院面试组织题库及答案
- 2025年中考真题地理生物及答案
- 2025年场景设计考试试题及答案
- 专利合同(标准版)
- 烫伤走失应急预案
- 山西计量考试试题及答案
- 精准计量灌装系统行业跨境出海项目商业计划书
- 老年云计算服务创新创业项目商业计划书
- 老年人跌倒预警表行业跨境出海项目商业计划书
- 拓展思维测试题及答案
- 2025-2030儿童语言启蒙教育市场现状与未来潜力分析报告
- 2025年中国动态视觉传感器行业市场全景分析及前景机遇研判报告
- 灌南七年级上册月考试卷及答案
- 李光平-哈工大-机械工程材料单元1课件
- (单元培优卷)第4单元 人体的奥秘-比 单元全真模拟培优卷(含答案)数学青岛版(六三学制)六年级上册
- 综合实践活动 绘制公园平面地图教学设计-2025-2026学年初中数学浙教版2024八年级上册-浙教版2024
- 第一讲-决胜十四五奋发向前行-2025秋形势与政策版本-第二讲-携手周边国家共创美好未来-2025秋形势与政策版本
- 【教学评一体化】第二单元 再现“生活记忆”做“追光记录者”-【大单元公开课一等奖创新教学设计】新修订统编版语文八年级上册名师备课系列
- 学堂在线 极区航海导航保障 章节测试答案
- 智慧指挥中心建设总体方案设计
- 中小学、幼儿园食堂食材采购项目 (米、面、油(含乳制品))服务方案投标文件(技术方案)
评论
0/150
提交评论