




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉溪市民中2024学年高二上数学期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在四面体OABC中,,,,点在线段上,且,为的中点,则等于()A. B.C. D.2.直线的斜率为()A.135° B.45°C.1 D.-13.过点的直线与圆相切,则直线的方程为()A.或 B.或C.或 D.或4.已知公比不为1的等比数列,其前n项和为,,则()A.2 B.4C.5 D.255.已知函数,则()A.函数的极大值为,无极小值 B.函数的极小值为,无极大值C.函数的极大值为0,无极小值 D.函数的极小值为0,无极大值6.函数在上单调递增,则k的取值范围是()A B.C. D.7.已知双曲线C:的右焦点为,一条渐近线被圆截得的弦长为2b,则双曲线C的离心率为()A. B.C.2 D.8.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.39.若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为()A. B.C. D.10.倾斜角为120°,在x轴上截距为-1的直线方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=011.“”是“方程为双曲线方程”的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知直线和圆,则“”是“直线与圆相切”的().A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.如图,椭圆的左右焦点为,,以为圆心的圆过原点,且与椭圆在第一象限交于点,若过、的直线与圆相切,则直线的斜率______;椭圆的离心率______.14.已知圆C,直线l:,若圆C上恰有四个点到直线l的距离都等于1.则b的取值范围为___.15.若,,,,与,,,,,,均为等差数列,则______16.数列满足前项和,则数列的通项公式为_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,求函数在上的最大值与最小值.18.(12分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△BDC′的位置,如图2所示,并使得平面BDC′⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=.图1图2(1)求平面FBC′与平面FBA夹角的余弦值;(2)在线段AD上是否存在一点M,使得⊥平面?若存在,求的值;若不存在,说明理由.19.(12分)如图,在三棱锥中,平面平面,,都是等腰直角三角形,,,,分别为,的中点.(1)求证:平面;(2)求证:平面.20.(12分)如图,在四棱柱中,底面,,,且,(1)求证:平面平面;(2)求二面角所成角的余弦值21.(12分)已知圆C经过、两点,且圆心在直线上(1)求圆C的方程;(2)若直线经过点且与圆C相切,求直线的方程22.(10分)已知椭圆经过点,椭圆E的一个焦点为.(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于两点.求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】利用空间向量的加法与减法可得出关于、、的表达式.【题目详解】.故选:D.2、D【解题分析】由斜截式直接看出直线斜率.【题目详解】由题意得:直线斜率为-1,故选:D3、D【解题分析】根据斜率存在和不存在分类讨论,斜率存在时设直线方程,由圆心到直线距离等于半径求解【题目详解】圆心为,半径为2,斜率不存在时,直线满足题意,斜率存在时,设直线方程为,即,由,得,直线方程为,即故选:D4、B【解题分析】设等比数列的公比为,根据求得,从而可得出答案.【题目详解】解:设等比数列的公比为,则,所以,则.故选:B.5、A【解题分析】利用导数来求得的极值.【题目详解】的定义域为,,在递增;在递减,所以的极大值为,没有极小值.故选:A6、A【解题分析】对函数求导,由于函数在给定区间上单调递增,故恒成立.【题目详解】由题意可得,,,,.故选:A7、A【解题分析】求出圆心到渐近线的距离,根据弦长建立关系即可求解.【题目详解】双曲线的渐近线方程为,即,则点到渐近线的距离为,因为弦长为,圆半径为,所以,即,因为,所以,则双曲线的离心率为.故选:A.8、A【解题分析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【题目详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【题目点拨】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.9、D【解题分析】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,求出点M的轨迹方程即可计算得解.【题目详解】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,如图,设点,则,化简并整理得:,于是得点M的轨迹是以点为圆心,2为半径的圆,其面积为,所以M点的轨迹围成区域的面积为.故选:D10、D【解题分析】由倾斜角求出斜率,写出斜截式方程,再化为一般式【题目详解】由于倾斜角为120°,故斜率k=-.又直线过点(-1,0),所以方程为y=-(x+1),即x+y+=0.故选:D.【题目点拨】本题考查直线方程的斜截式,属于基础题11、C【解题分析】先求出方程表示双曲线时满足的条件,然后根据“小推大”原则进行判断即可.【题目详解】因为方程为双曲线方程,所以,所以“”是“方程为双曲线方程”的充要条件.故选:C.12、B【解题分析】首先求出直线与圆相切时的取值,再根据充分必要条件的定义判断.【题目详解】若直线与圆相切,则圆心到直线的距离,则,解得,所以“”是“直线与圆相切”的充分不必要条件.故选:B【题目点拨】本题考查直线与圆的位置关系,充分必要条件,重点考查计算,理解能力,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解题分析】根据直角三角形的性质求得,由此求得,结合椭圆的定义求得离心率.【题目详解】连接,由于是圆的切线,所以.在中,,所以,所以,所以直线的斜率.,根据椭圆的定义可知.故答案为:;【题目点拨】本小题主要考查椭圆的定义、椭圆的离心率,属于中档题.14、【解题分析】根据圆的几何性质,结合点到直线距离公式进行求解即可.【题目详解】圆C:的半径为3,圆心坐标为:设圆心到直线l:的距离为,要想圆C上恰有四个点到直线l的距离都等于1,只需,即,所以.故答案为:.15、##【解题分析】由题意利用等差数列的定义和通项公式,求得要求式子的值【题目详解】设等差数列,,,,的公差为,等差数列,,,,,,的公差为,则有,且,所以,则,故答案为:16、【解题分析】由已知中前项和,结合,分别讨论时与时的通项公式,并由时,的值不满足时的通项公式,故要将数列的通项公式写成分段函数的形式【题目详解】∵数列前项和,∴当时,,又∵当时,,故,故答案为.【题目点拨】本题考查的知识点是等差数列的通项公式,其中正确理解由数列的前n项和Sn,求通项公式的方法和步骤是解答本题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、最大值为,最小值为【解题分析】利用导数可求得的单调性,进而可得极值,比较极值和端点值的大小即可求解.【题目详解】由可得:,则当时,;当时,;所以在上单调递减,在上单调递增,,又因为,,所以,综上所述:函数在上的最大值为,最小值为.18、(1)(2)不存在,理由见解析【解题分析】(1)利用垂直关系,以点为原点,建立空间直角坐标系,分别求平面和平面的法向量和,利用公式,即可求解;(2)若满足条件,,利用向量的坐标表示,判断是否存在点满足.【小问1详解】∵,E为BD的中点∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如图以E原点,分别以EB、AE、EC′所在直线为x轴、y轴、z轴建立空间直角坐标系,则B(1,0,0),A(0,-,0),D(-1,0,0),F(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),设平面的法向量为=(x,y,z),则,取z=1,得平面的一个法向量=(,1,1),设平面FBA的法向量为=(a,b,c),则取b=1,得平面FBA的一个法向量为=(-,1,0),∴设平面ABD与平面的夹角为θ,则∴平面ABD与平面夹角的余弦值为.【小问2详解】假设在线段AD上存在M(x,y,z),使得平面,设(0≤λ≤1),则(x,y+,z)=(-1,,0),即(x,y+,z)=(-λ,,0),∴,,z=0,∴,是平面的一个法向量由∥,得,此方程无解.∴线段AD上不存点M,使得平面.19、(1)证明见解析(2)证明见解析【解题分析】(1)由三角形的中位线定理可证得MN∥AB,再由线面垂直的判定定理可证得结论,(2)由已知可得AB⊥BC,VC⊥AC,再由已知结合面面垂直的性质定理可得VC⊥平面ABC,从而有AB⊥VC,然后由线面垂直的判定定理可证得结论【小问1详解】证明:∵M,N分别为VA,VB的中点,∴MN∥AB,∵AB⊄平面CMN,MN⊂平面CMN,∴AB∥平面CMN【小问2详解】证明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB⊂平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC20、(1)证明见解析;(2).【解题分析】(1)证出,,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证明.(2)分别以,,为,,轴,建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,由即可求解.【题目详解】(1)证明:因为,,所以,,因为,所以,所以,即因为底面,所以底面,所以因为,所以平面,又平面,所以平面平面(2)解:如图,分别以,,为,,轴,建立空间直角坐标系,则,,,,所以,,,设平面的法向量为,则令,得设平面的法向量为,则令,得,所以,由图知二面角为锐角,所以二面角所成角的余弦值为【题目点拨】思路点睛:解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内;(2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错.(3)利用数量积验证垂直或求平面的法向量.(4)利用法向量求距离、线面角或二面角.21、(1);(2)【解题分析】(1)根据圆心在弦的垂直平分线上,先求出弦的垂直平分线的方程与联立可求得圆心坐标,再用两点间的距离公式求得半径,进而求得圆的方程;(2)当直线斜率不存在时,与圆相切,方程为;当直线斜率存在时,设斜率为,写出其点斜式方程,利用圆心到直线的距离等于半径建立方程求解出的值.试题解析:(1)依题意知线段的中点坐标是,直线的斜率为,故线段的中垂线方程是即,解方程组得,即圆心的坐标为,圆的半径,故圆的方程是(2)若直线斜率不存在,则直线方程是,与圆相离,不合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电玩城技术知识培训总结课件
- 北京密云初中考试真题及答案
- S-Benzoylcaptopril-d3-生命科学试剂-MCE
- Citalopram-impurity-1-生命科学试剂-MCE
- 报关业务操作考试题目及答案
- 初级软考试题及答案
- 安全知识考试题及答案
- 彩陶考试题及答案
- 电炉知识培训总结课件
- 高校工会知识课件
- 民警给学生上交通安全课
- 2024年司法考试刑法真题及答案
- 《隔离技术规范》课件
- 《云南省学校安全条例(修订草案)》知识培训
- 高血压糖尿病健康管理
- 【初中化学】二氧化碳的实验室制取课件-2024-2025学年九年级化学人教版上册
- 九年级《道德与法治》(上册)教学计划及教学进度
- 商场租户撤场协议书范本
- DB3301T 0461-2024 电动自行车停放充电场所消防安全管理规范
- 九年级上册英语书译林版单词表
- 车库业主与租赁者安装充电桩协议书
评论
0/150
提交评论