2024学年安徽省毫州市第二中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2024学年安徽省毫州市第二中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2024学年安徽省毫州市第二中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2024学年安徽省毫州市第二中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2024学年安徽省毫州市第二中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024学年安徽省毫州市第二中学高二数学第一学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正三棱锥的侧面都是直角三角形,,分别是,的中点,则与平面所成角的余弦值为()A. B.C. D.2.某研究所为了研究近几年中国留学生回国人数的情况,对2014至2018年留学生回国人数进行了统计,数据如下表:年份20142015201620172018年份代码12345留学生回国人数/万36.540.943.348.151.9根据上述统计数据求得留学生回国人数(单位:万)与年份代码满足的线性回归方程为,利用回归方程预测年留学生回国人数为()A.63.14万 B.64.72万C.66.81万 D.66.94万3.设,,,则,,大小关系是A. B.C. D.4.椭圆的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则∠F1PF2的余弦值为A. B.C. D.5.已知数列满足,,记数列的前n项和为,若对于任意,不等式恒成立,则实数k的取值范围为()A. B.C. D.6.已知双曲线的焦距为,且双曲线的一条渐近线与直线平行,则双曲线的方程为()A. B.C. D.7.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种 B.6种C.4种 D.12种8.如图,在三棱锥中,两两垂直,且,点E为中点,若直线与所成的角为,则三棱锥的体积等于()A. B.C.2 D.9.数列满足,且,是函数的极值点,则的值是()A.2 B.3C.4 D.510.设为等差数列的前项和,若,则的值为()A.14 B.28C.36 D.4811.若直线l的倾斜角是钝角,则l的方程可能是()A. B.C. D.12.已知直线的方向向量为,则直线l的倾斜角为()A.30° B.60°C.120° D.150°二、填空题:本题共4小题,每小题5分,共20分。13.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层的中心是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块.已知每层圈数相同,共有9圈,则下层比上层多______块石板14.已知函数有三个零点,则实数的取值范围为___________.15.若“”是真命题,则实数的最小值为_____________.16.已知命题p:若,则,那么命题p的否命题为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,已知,且当,时,(1)证明数列是等比数列;(2)设,求数列的前项和18.(12分)已知椭圆的焦点为,且长轴长是焦距的倍(1)求椭圆的标准方程;(2)若斜率为1的直线与椭圆相交于两点,已知点,求面积的最大值19.(12分)已知函数(1)求f(x)在点处的切线方程;(2)求证:20.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若与相交于A、两点,设,求.21.(12分)已知椭圆过点,离心率为(1)求椭圆的标准方程;(2)过椭圆的上顶点作直线l交抛物线于A,B两点,O为坐标原点①求证:;②设OA,OB分别与椭圆相交于C,D两点,过点O作直线CD的垂线OH,垂足为H,证明:为定值22.(10分)已知圆的圆心为,且经过点.(1)求圆的标准方程;(2)已知直线与圆相交于、两点,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,利用向量法能求出PB与平面PEF所成角的正弦值.【题目详解】∵正三棱锥的侧面都是直角三角形,E,F分别是AB,BC的中点,∴以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,设,则,,,,,,,,设平面PEF的法向量,则,取,得,设PB与平面PEF所成角为,则,∴PB与平面PEF所成角的正弦值为.故选:C.2、D【解题分析】先求出样本点的中心,代入线性回归方程即可求出,再将代入线性回归方程即可得到结果【题目详解】由题意知:,,所以样本点的中心为,所以,解得:,可得线性回归方程为,年对应的年份代码为,令,则,所以预测2022年留学生回国人数为66.94万,故选:D.3、A【解题分析】构造函数,根据的单调性可得(3),从而得到,,的大小关系【题目详解】考查函数,则,在上单调递增,,(3),即,,故选:【题目点拨】本题考查了利用函数的单调性比较大小,考查了构造法和转化思想,属基础题4、B【解题分析】根据题意,椭圆的标准方程为,其中则,则有|F1F2|=2,若a=3,则|PF1|+|PF2|=2a=6,又由|PF1|=4,则|PF2|=6-|PF1|=2,则cos∠F1PF2==.故选B5、C【解题分析】由已知得,根据等比数列的定义得数列是首项为,公比为的等比数列,由此求得,然后利用裂项求和法求得,进而求得的取值范围.【题目详解】解:依题意,当时,,则,所以数列是首项为,公比为的等比数列,,即,所以,所以,所以的取值范围是.故选:C.6、B【解题分析】根据焦点在x轴上的双曲线渐近线斜率为±可求a,b关系,再结合a,b,c关系即可求解﹒【题目详解】∵双曲线1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴双曲线的方程为故选:B7、B【解题分析】由已知可得只需对剩下3人全排即可【题目详解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,则只需对剩下3人全排即可,则不同的排法共有,故选:B8、D【解题分析】由题意可证平面,取BD的中点F,连接EF,则为直线与所成的角,利用余弦定理求出,根据三棱锥体积公式即可求得体积【题目详解】如图,∵,点为的中点,∴,,∵,,两两垂直,,∴平面,取BD的中点F,连接EF,∴为直线与所成的角,且,由题意可知,,设,连接AF,则,在中,由余弦定理,得,即,解得,即∴三棱锥的体积故选:9、C【解题分析】利用导数即可求出函数的极值点,再利用等差数列的性质及其对数的运算性质求解即可【题目详解】由,得,因为,是函数的极值点,所以,是方程两个实根,所以,因为数列满足,所以,所以数列为等差数列,所以,所以,故选:C10、D【解题分析】利用等差数列的前项和公式以及等差数列的性质即可求出.【题目详解】因为为等差数列的前项和,所以故选:D【题目点拨】本题考查了等差数列的前项和公式的计算以及等差数列性质的应用,属于较易题.11、A【解题分析】根据直线方程,求得直线斜率,再根据倾斜角和斜率的关系,即可判断和选择.【题目详解】若直线的倾斜角为,则,当时,为钝角,当,,当,为锐角;当不存在时,倾斜角为,对A:,显然倾斜角为钝角;对B:,倾斜角为锐角;对C:,倾斜角为锐角;对D:不存在,此时倾斜角为直角.故选:A.12、B【解题分析】利用直线的方向向量求出其斜率,进而求出倾斜角作答.【题目详解】因直线的方向向量为,则直线l的斜率,直线l的倾斜角,于是得,解得,所以直线l的倾斜角为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、1458【解题分析】首先由条件可得第圈的石板为,且为等差数列,利用基本量求和,即可求解.【题目详解】设第圈的石板为,由条件可知数列是等差数列,且上层的第一圈为,且,所以,上层的石板数为,下层的石板数为.所以下层比上层多块石板.故答案为:145814、【解题分析】由题意可得与的图象有三个不同的交点,经判断时不符合题意,当时,时,两个函数图象有一个交点,可得时与的图象有两个交点,等价于与的图象有两个不同的交点,对求导,数形结合即可求解.【题目详解】令可得,若函数函数有三个零点,则可得方程有三个根,即与的图象有三个不同的交点,作出的图象如图:当时,是以为顶点开口向下的抛物线,此时与的图象没有交点,不符合题意;当时,与的图象只有一个交点,不符合题意;当时,时,与的图象有一个交点,所以时与的图象有两个交点,即方程有两个不等的实根,即方程有两个不等的实根,可得与的图象有两个不同的交点,令,则,由即可得,由即可得,所以在单调递增,在单调递减,作出其图象如图:当时,,当时,可得与的图象有两个不同的交点,即时,函数有三个零点,所以实数的取值范围为,故答案为:【题目点拨】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.15、1【解题分析】若“”是真命题,则大于或等于函数在的最大值因为函数在上为增函数,所以,函数在上的最大值为1,所以,,即实数的最小值为1.所以答案应填:1.考点:1、命题;2、正切函数的性质.16、若,则【解题分析】直接利用否命题的定义,对原命题的条件与结论都否定即可得结果【题目详解】因为命题:若,则,所以否定条件与结论后,可得命题的否命题为若,则,故答案为若,则,【题目点拨】本题主要考查命题的否命题,意在考查对基础知识的掌握与应用,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】(1)消去,只保留数列的递推关系,根据题干提示来证明,注意证明首项不是零;(2)利用裂项求和来解决.【小问1详解】证明:由题意,当时,即,,整理,得,,,,数列是以2为首项,2为公比的等比数列【小问2详解】解:由(1)知,,则,,,,,各项相加,可得,当n=1成立,故18、(1);(2)1.【解题分析】(1)根据给定条件求出椭圆半焦距c,长短半轴长a,b即可得解.(2)设出直线的方程,再与椭圆C的方程联立,求出弦AB长及点P到直线的距离,然后求出面积的表达式并求其最大值即得.【小问1详解】设椭圆的标准方程为,依题意,半焦距,,即,所以椭圆的标准方程为.【小问2详解】依题意,设直线,,由消去y并整理得:,由,解得,则有,,于是得,而点到直线的距离为,因此,的面积,当且仅当,即时取“=”,所以面积最大值为1.【题目点拨】结论点睛:直线l:y=kx+b上两点间的距离;直线l:x=my+t上两点间的距离.19、(1);(2)证明见解析【解题分析】(1)求导,进而得到,,写出切线方程;(2)将转化为,设,,利用导数法证明.【题目详解】(1)函数的定义域是,可得又,所以f(x)在点处的切线方程为整理得(或斜截式方程)(2)要证只需证因为,所以不等式等价于设,,;所以在单调递减,在单调递增故又,;所以在单调递增,在单调递减故因为且两个函数的最值点不相等所以有,原不等式得证20、(1)曲线的普通方程为;曲线的直角坐标方程为(2)【解题分析】(1)直接利用转换关系式把参数方程和极坐标方程转化为直角坐标方程;(2)易得满足直线的方程,转化为参数方程,代入曲线的普通方程,再利用韦达定理结合弦长公式即可得出答案.【小问1详解】解:曲线的参数方程为(为参数),转化为普通方程为,曲线的极坐标方程为,即,根据,转化为直角坐标方程为;【小问2详解】解:因为满足直线的方程,将转化为参数方程为(为参数),代入,得,设A、两点的参数分别为,则,所以.21、(1)(2)①证明见解析;②证明见解析【解题分析】(1)根据离心率及过点求出求解即可;(2)①设直线l的方程为,利用向量的数量积计算证明即可;②设直线CD方程为,利用求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论